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Preface
DAX provides an extra edge by extracting key information from the data that
is already present in your model. With this book, you will leverage DAX's
functionality and flexibility in the business intelligence (BI) and data
analytics domain.

You'll start with the basics of DAX, along with the importance of good data
models, and how to write efficient DAX formulas by using variables and
good formatting. You will learn how DAX queries work using an example-
based approach. You will learn how to optimize your BI workflow by
writing efficient and powerful DAX queries with easy-to-follow
explanations and examples. You will learn how to manipulate and load
datasets of different complexities within various Microsoft products, such as
Power BI, SQL Server, and Excel Power Pivot. You will learn how to build
and extend your data models to gain additional insights. Later, you will delve
into progressive DAX syntax and functions to understand complex
relationships in DAX. You will cover important DAX functions, specifically
those related to tables, date and time, filtering, and statistics. You will then
move on to more advanced topics, such as how the formula and storage
engines work to be able to optimize your queries.

By the end of this book, you will be able to employ DAX to enhance your
data model by extracting new information and gaining deeper insights.



Who this book is for
This book is for data analysts, business analysts, BI developers, or any SQL
users who want to get the best out of DAX in the BI and data analytics
domain using an example-rich guide. You will learn how to use DAX queries
in Power BI, Excel, and SQL Server to carry out efficient analysis. Some
understanding of BI concepts is mandatory.



What this book covers
Chapter 1, What is DAX?, gives you an overview of the DAX language, what it
is, and how, as a BI pro, you can use it to create new information from
existing data. It will introduce the different calculation types, calculated
columns and measures, and the CALCULATE function, probably the most
important DAX function.

Chapter 2, Using DAX Variables and Formatting, teaches you about using
variables in DAX formulas and how these can make your DAX code easier
to read and potentially more efficient. You will also look at recommended
formatting styles for DAX code. Finally, you'll look at error handling and
how using variables can make this easier.

Chapter 3, Building Data Models, talks about the importance of building a
well-defined data model, both from the point of view of a BI professional
and in terms of making DAX easier to use.

Chapter 4, Working with DAX in Excel, Power BI, and SSAS, looks at the three
different platforms that support DAX – Excel, Power BI, and SSAS Tabular.
You will look at loading data in more depth and the different ways DAX is
used in each.

Chapter 5, Getting it into Context, moves beyond the basics and builds upon
what you learned about evaluation contexts in the first chapter. You will learn
about the difference between the row context and the filter context and how
these affect DAX functions. You will also take a more in-depth look at the
CALCULATE function.

Chapter 6, Progressive DAX Syntax and Functions, explores the structure of
DAX syntax, and you'll look at the groups of functions currently available in
DAX. You'll take a more in-depth look at relationships, aggregation
functions, and parent-child functions, all with hands-on examples.



Chapter 7, Table Functions, concerns the DAX table functions and includes
details of the syntax of each function, as well as an explanation of how each
works. Finally, you'll get hands-on with some practical examples of the
functions being used.

Chapter 8, Date, Time, and Time Intelligence Functions, is where you will
learn about the DAX date, time, and time intelligence functions, with details
of the syntax of each function, including an explanation of how each works.
Finally, you'll get hands-on with some practical examples of the functions
being used.

Chapter 9, Filter Functions, moves on to the DAX filter functions, with details
of the syntax of each function, including an explanation of how each works.
Finally, you'll get hands-on with some practical examples of the functions
being used.

Chapter 10, Statistical Functions, covers the DAX statistical functions, with
details of the syntax of each function, including an explanation of how each
works. Finally, you'll get hands-on with some practical examples of the
functions being used.

Chapter 11, Working with DAX Patterns, is the final chapter of part 2, and you
will look at some examples of DAX being used in the form of DAX patterns.
Each pattern will have a walkthrough involving a practical example that
breaks down the code and gives a detailed explanation of how it works.

Chapter 12, Optimizing Your Data Model, delves into the VertiPaq engine and
how it can be used to help you optimize your data model. You'll also look at
some ways in which you can optimize your data model along with how and
why this may improve performance.

Chapter 13, Optimizing Your DAX Queries, shows you some techniques that
will help to make your DAX calculations more efficient, including a look at
some tools to help you analyze query performance. You'll also look at the
two DAX calculation engines: the storage engine and the formula engine.



To get the most out of this book
You should be familiar with general BI concepts. A basic understanding of
using Power BI, Excel, and SQL Server to carry out efficient analysis is
mandatory.



Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpu
b.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the Support tab.
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4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
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7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pac
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Download the color images
We also provide a PDF file that has color images of the
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk
image file as another disk in your system."

A block of code is set as follows:

Return % = 
DIVIDE (
    SUM ( Sales[ReturnQuantity] ), 
    SUM ( Sales[SalesQuantity] )
)

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.



Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and email us
at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com/s
upport/errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.
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Section 1: Introduction to DAX for
the BI Pro
This section covers the basics of DAX, along with the importance of good
data models and how to write efficient DAX formulas by using variables and
good formatting. You will understand how DAX queries work using an
example-based approach. You will also learn how to optimize the BI
workflow by writing efficient and powerful DAX queries with easy-to-
follow explanations and examples:

Chapter 1, What Is DAX?
Chapter 2, Using DAX Variables and Formatting
Chapter 3, Building Data Models
Chapter 4, Working with DAX in Power BI, Excel, and SSAS
Chapter 5, Getting It into Context



What is DAX?
In this chapter, you will begin your journey to mastering the use of DAX with
a brief introduction to the DAX language itself. We'll look at what it is and
why, as a Business Intelligence (BI) professional, you need to learn it if you
want to unleash the full power of Excel Power Pivot, Analysis Services, or
Power BI.

By the end of this chapter, you will be introduced to the different groups of
functions and operators available and the differences between calculated
columns and measures, and you will have started your understanding of
evaluation contexts. This chapter will round off with a look at how you can
alter how filters affect measures by using one of the most important DAX
functions, the CALCULATE function. 

This chapter is broken down into the following sections:

Introducing DAX
Working with data types and operators
Working with calculated columns and measures
Evaluation contexts – part 1
Using the CALCULATE function



Introducing DAX
DAX, or Data Analysis Expressions to give it its full name, is a collection
of constants, operators, and functions that are used to build expressions that
return one or more values. It was originally developed by the SQL Server
Analysis Services team as part of their Project Gemini, the development of a
new in-memory database technology that would let Excel users work with
massive amounts of data. It was introduced initially in 2009 as an add-in to
Microsoft Excel 2010 and eventually went on to become the Power Pivot
add-in for Excel that we have today.

Today, DAX consists of more than 250 functions, and regularly receives
updates to existing functions as well as receiving new functions. It is a
language used by the following products in Microsoft's business intelligence
stack:

Excel Power Pivot
Power BI
SQL Server Analysis Services (SSAS) Tabular
Azure Analysis Services

DAX is not a programming language in the traditional sense but is instead a
functional language, which means that it makes calls to a function as part of
an expression. The result of an expression will, depending on the function,
return either a single value or a table as output. The output from an
expression can be used to nest functions, by using it as the input parameter to
another function.

DAX can only be used to filter or query a physical table; it cannot add,
delete, or update data in a table. However, if you are using Power BI or
SSAS Tabular, it can use the result of a DAX expression to add a new table
to a data model. Unfortunately, this method cannot be used to add tables to an
Excel Power Pivot data model without using a workaround, which itself has
limitations.



As Power Pivot was originally built as an add-in to Excel, many of the DAX
functions are very similar to functions in Excel, which creates a level of
familiarity for BI professionals who are already using Excel.

In Table 1-1, you will see that while some functions are almost identical in
syntax, others are not. In Excel, the AND function can compare up to 255
logical conditions, while the equivalent function in DAX is limited to just
two. Even where functions are identical, the ones in Excel will work with a
range of cells, whereas the DAX equivalent will work with columns in a
table:

Excel
Function

DAX
Function Comments

SUM ( cell

range )

SUM (

table[column]

)

Excel works with a range of cells; DAX
works with the column of a table.

MIN ( cell

range )

MIN (

table[column]

)

Excel works with a range of cells; DAX
works with the column of a table.

MAX ( cell

range )

MAX (

table[column]

)

Excel works with a range of cells; DAX
works with the column of a table.

MEDIAN (

number1,

[number2], ...

)

MEDIAN (

table[column]

)

Excel works with a list of numbers of
cells; DAX works with the column of a
table.



AND ( logical1,

[logical2],

...)

AND (

logical1,

logical2 )

Excel supports up to 255 logical
conditions; DAX only supports 2 logical
conditions.

Table 1-1: Comparison of Excel and DAX functions

If you are already working with formulas in Excel, then you will be
accustomed to working with cells and ranges of cells. However, if you are to
successfully transition to working with DAX, you will need to learn to work
with the rows and columns of data in tables.

DAX consists of the following function groups:

Aggregate
Count
Date and Time
Time intelligence
Information
Logical
Mathematical
Statistical
Text
Parent/Child

While DAX functions appear similar to functions found in Excel, they have
their own unique characteristics, such as being able to perform calculations
that vary by context. They can also return tables as well as values and they
can work across the relationships of a data model.

As a BI professional, you may be asking whether it's necessary to learn DAX
to be able to use tools such as Power BI or Excel Power Pivot; and the
simple answer is no. If you have a well-designed data model filled with
good quality data and your reporting requirements are simple, you can get
started by dragging and dropping a numeric field onto the report canvas in
Power BI, or by adding it to a pivot table in Excel. Behind the scenes, a



DAX measure is automatically created, and this is known as an implicit
measure.

However, when you want to add columns to existing tables, based on data
already in those tables, or you want to create some summary tables, you will
probably have to go back to your IT department to get them to add these to an
existing database or data warehouse.

The power of DAX is that it enables you, as a BI professional, to add these
elements to your data model yourself. Using DAX functions, you can add new
columns to an existing table, such as an age range field, based on a person's
age.

You can also create explicit measures, which allow you to create aggregated
summaries of data, such as record counts. Furthermore, these measures will
be dynamically calculated based on any filters or slicers that you add to your
Power BI dashboard or Power Pivot worksheet. As you make changes to
these filters and slicers, the measures are recalculated dynamically.

With Power BI and Analysis Services, DAX can even be used to create new
tables in your data model. Unfortunately, this feature is not available with
Excel Power Pivot models.

Quite simply, DAX gives you, as a BI professional, the power to gain deeper
insights into your data that you wouldn't otherwise be able to get. When you
start to look at the more powerful DAX functions, such as the time-
intelligence functions, you can start to carry out some truly amazing analysis
of your data. It becomes easy to look at a year-on-year comparison of sales
or to look at percentage growth across product ranges for different dates.

While the syntax of DAX is simple, mastering its use can be a challenge. If
you are coming from an Excel background, you should be prepared to adopt a
different mindset. You will need to study the theory that will be delivered in
the following chapters and gain a solid understanding of the following
fundamental concepts:

Calculated columns and measures



Context
Syntax
Functions

Each of these will be looked at in detail throughout this book, with plenty of
hands-on examples to help you to understand each concept. When you have
done this, you will be ready to put what you have learned into practice.
Ultimately, the key to truly mastering the art of using DAX is down to lots of
practice and experience.



Working with data types and
operators
In DAX, you define the data type for columns of data in a table. In this
section, we will look at the different data types that are available and delve
into the implicit data type conversions that take place when data is used in a
DAX expression. We will also look at the different groups of available
operators.



Data types
Choosing the correct data type when building your data model helps to
ensure that the size of your model is kept to a minimum. It can also help with
performance when it comes to refreshing the data in your model.

When you load new data into your model, the modeling engine will attempt to
pick the most efficient data type for a column, based on the values that it is
importing for that column. However, it is worth checking the data types that it
selects, as it may not always choose the most appropriate data type for your
data needs. For example, if a column currently contains only integer numbers,
the modeling engine will pick the Whole Number data type. If this column
subsequently contains fractional values, then the fractional part of these
numbers will be lost when the data is imported. Worse still, if the column
subsequently contains non-numeric data in the column, then you will get
errors when the data is refreshed.

You should always use the correct data type, as some DAX functions have special
data type requirements. Although DAX may implicitly convert a data type for you,
there are some cases where it will not.

Implicit conversions are described later in this article. Table 1-2 gives
details of the different data types available in DAX:

Data
Type

Stored
As Comments

Whole
Number

64-bit (8
byte)
integer
value

Integers between -9,223,372,036,854,775,808
and 9,223,372,036,854,775,807.



Decimal
Number

64-bit (8
byte)
real
number

Negative numbers between -1.79E +308 and
-2.23E -308, zero, and positive number
between 2.23E -308 and 1.79E + 308; the
number of significant digits is limited to 15
decimal digits, with the separator occurring
anywhere within the number.

Currency

(Fixed
Decimal
Number in
Power BI)

64-bit (8
byte)
real
number

Numbers that have four decimal digits of fixed
precision between -922,337,203,685,477.5808
and 922,337,203,685,477.5807.

Date/Time

64 bit (8
byte)
real
number

Underneath the covers, the Date/Time value is
stored as a Decimal Number type. Supports
dates from March 1, 1900 through to December
31, 9999.

Text

A
Unicode
character
string

Represents strings, numbers, or dates in a text
format; maximum length is 268,435,456
Unicode characters or 536,870,912 bytes.

True/False Boolean A Boolean value that is either True or False.

Blank N/A Creates a blank with the BLANK function, and
verify blanks with ISBLANK.



Table N/A Represents a table in the data model.

Table 1-2: Data types in DAX

DAX functions have specific requirements for the type of data used for inputs
and outputs. If the data in a column passed as an argument is not compatible
with the data type required by the function, DAX will try to implicitly
convert it into the required data type. If this is not possible, it will return an
error.

The type of implicit conversion that DAX performs is determined by the
operator, it will convert the data into the type required before it performs the
requested operation. Tables 1-3 through to 1-6 list the operators and show
the implicit conversion that takes place when the data type in the row is
combined with the data type in the column.

Table 1-3 shows the implicit conversion that takes place when a value with
the data type in the row is added to a value with the data type in the column:

Addition (+) Whole Currency Decimal Date/Time

Whole Whole Currency Decimal Date/Time

Currency Currency Currency Decimal Date/Time

Decimal Decimal Decimal Decimal Date/Time

Date/Time Date/Time Date/Time Date/Time Date/Time

Table 1-3: Addition



Table 1-4 shows the implicit conversion that takes place when a value with
the data type in the row is subtracted from a value with the data type in the
column:

Subtraction (-)
Row – Column Whole Currency Decimal Date/Time

Whole Whole Currency Decimal Decimal

Currency Currency Currency Decimal Decimal

Decimal Decimal Decimal Decimal Decimal

Date/Time Date/Time Date/Time Date/Time Date/Time

Table 1-4: Subtraction

Table 1-5 shows the implicit conversion that takes place when a value with
the data type in the row is multiplied by a value with the data type in the
column:

Multiplication (*) Whole Currency Decimal Date/Time

Whole Whole Currency Decimal Whole

Currency Currency Decimal Currency Currency



Decimal Decimal Currency Decimal Decimal

Table 1-5: M ultiplication

Table 1-6 shows the implicit conversion that takes place when a value with
the data type in the row is divided by a value with the data type in the
column:

Division (/)
Row / Column Whole Currency Decimal Date/Time

Whole Decimal Currency Decimal Decimal

Currency Currency Decimal Currency Decimal

Decimal Decimal Decimal Decimal Decimal

Date/Time Decimal Decimal Decimal Decimal

Table 1-6: Division

In addition to the implicit conversions of numeric types shown in the
preceding tables, DAX will automatically convert numbers into strings and
strings into numbers depending on the requirements of the operator.

For the concatenation operator (&), DAX will convert numeric values into
string values:

Measure 1-1 = 2 & 3



In this example, the DAX measure will evaluate to the string value, "23".

For an arithmetic operator such as addition (+), string values will be
converted into a numeric value where possible:

Measure 1-2 = "2" + "3"

In this example, the DAX measure will evaluate to the numeric value 5.

However, there is the potential for errors to occur when allowing for
automatic conversion as described. For example, where you are passing
string values to an arithmetic operator that cannot be converted into a
number, your expression will generate an error. Therefore, you must ensure
that correct data types are used for the columns that are used with operators.
Exception handling should be done if there is any possibility of errors
occurring.



Operators
There are four groups of operators in DAX:

Arithmetic
Comparison
Concatenation
Logical

Table 1-7 shows the different types of operator available within the
arithmetic group, along with an example illustrating typical use:

Operator Meaning Example

+ Addition 3 + 7 = 10

- Subtraction or sign 10 - 7 = 3

* Multiplication 10 * 7 = 70

/ Division 10 / 5 = 2

^ Exponentiation 3  ̂4 = 81

Table 1-7: DAX arithmetic operators



When using arithmetic operators it is important to consider the order in
which they need to be applied. If necessary, use parentheses to override the
precedence of an operator. Table 1-8 shows the order of precedence for each
of the different DAX arithmetic operators:

Operator Description

^ Exponentiation

- Sign

* and / Multiplication and division

+ and - Addition and subtraction

Table 1-8: DAX arithmetic operator precedence

The following gives an example of where parenthesis can be used
to override the precedence of an operator:

5*2+6 = 16

Here, the 5 is multiplied by the 2 to give 10, before the 6 is added to give 16.
The multiplication operator (*) has higher precedence than the addition
operator (+), so that part of the calculation is calculated first.

However, take a look at this example:

5*(2+6) = 40



Here, the use of the parentheses around 2+6 gives it higher precedence and
causes it to be calculated before the result is multiplied by 5.

Table 1-9 shows the different types of comparison operators available, with
an example illustrating the operator being used:

Operator Meaning Example

= Equal to [Firstname] = "Ian"

== Strictly equal to
[Number] == 0
true only when number equals 0
and false if blank

> Greater than [Number] > 100

< Less than [Number] < 100

>= Greater than or equal to [Number] >= 100

<= Less than or equal to [Number] <= 100

<> Not equal to [Firstname] <> "Ian"

Table 1-9: DAX comparison operators
When using comparison expressions, you should consider the following points:



Boolean values are treated as greater than string values.
String values are treated as greater than numeric or date/time values.
Numeric and date/time values are treated the same.

Table 1-10 shows the concatenation operator, with some examples
illustrating how it is used:

Operator Meaning Example

& Joins two values together to form
one text value

"abcd" & "efg" =
"abcdefg"
2 & 3 = "23"

Table 1-10: DAX concatenation operator

It is important to note that, as we have seen in the previous section on data
types, when using the concatenation operator, DAX will implicitly convert
numeric values to string values.

Table 1-11 shows the different types of logical operators available, with
examples of each operator being used:

Operator Meaning Example

&&
Logical AND: If both
expressions are TRUE, return
TRUE; otherwise return FALSE.

(true) && (true) = true
(true) && (false) =
false

|| Logical OR: If either expression
is TRUE, return TRUE; when

(true) || (true) = true
(true) || (false) = true



both expressions are FALSE,
return FALSE.

(false) || (true) = true
(false) || (false) = false

IN
Logical OR: Creates a logical
OR condition between each
value included in a list of values.

Channel(ChannelName)
IN (‘Store’, ‘Online’,
‘Catalog’)

Table 1-11: DAX logical operators

In addition to the preceding logical operators, DAX also has the logical AND
and OR functions that replicate the functionality of the AND operator (&&) and OR
operator (||) respectively.

The advantage of using these functions over the equivalent operators in a
complex expression is that it is easier to format and read the code. However,
one drawback is that the functions only accept two arguments, restricting you
to comparing two conditions only. To be able to compare multiple
conditions, you will need to nest the functions. In this case, it might be better
to use the AND operator (&&) instead.

The following gives an example of the syntax for the AND function:

Measure 1-3 =
IF (
    AND (
        20 > 10,
        -20 < -10
    ),
    "All true",
    "One or more false"
)

The following gives an example showing the syntax of the AND function nested
to compare three conditions:

Measure 1-4 =
IF (
    AND (
        AND (
            10 > 9,
            5 < 10
        ),



        20 > 10
    ),
    "All true",
    "One or more false"
)

The following gives an alternative example of the one given, using the
equivalent AND operator (&&):

Measure 1-5 =
IF (
    10 > 9
        && 5 < 10
        && 20 > 10,
    "All true",
    "One or more false"
)

Any column in a table can have blank values, which are the result of the data
source containing NULL in values. How a blank value affects the result of a
DAX expression depends on the data type expected and the operator being
used. In some instances, a blank value will be converted into a zero or an
empty string, while in others, it will propagate through as a blank. Table 1-
12 shows how different DAX operators handle blank values:

Expression DAX

BLANK + BLANK BLANK

BLANK & "Hello" Hello

BLANK + 2 2

BLANK * 2 BLANK



2 / BLANK Infinity

0 / BLANK NaN

BLANK / BLANK BLANK

FALSE OR BLANK FALSE

FALSE AND BLANK FALSE

TRUE OR BLANK TRUE

TRUE AND BLANK FALSE

BLANK OR BLANK BLANK

BLANK AND BLANK BLANK

Table 1-12: Handling blank values in DAX

The BLANK data type represents nulls, blank values, empty cells, and missing
values. The BLANK function is used to generate blanks, while the ISBLANK
function is used to verify a blank value.



Working with calculated columns
and measures
Understanding the difference between a calculated column and a measure
(also known as a calculated field) is an important concept that you will need
to learn to begin mastering DAX. At first, they may seem very similar, and
indeed there are some instances where both can be used to obtain the same
result. However, they are different and serve different purposes. Likewise,
they also impact resources in different ways. Calculated columns allow you
to extend a table in your data model by creating additional columns.
Measures allow you to aggregate the values of rows in a table and take into
account any current filters or slicers that are applied.



Calculated columns
You can create new columns by using DAX expressions if you want to extend
a table in your Power BI, Excel Power Pivot, or Analysis Services Tabular
data model. These are referred to as calculated columns. In Excel, each row
of a column in a worksheet can be defined by using a different expression.
However, calculated columns evaluate the same expression throughout the
column of a table, calculating the appropriate value on a row-by-row basis.

To create a new calculated column in Power BI Desktop, follow these steps:

1. Start on the report page and highlight the table that you want to add a new
column to from the list of tables shown in the Fields pane on the right-
hand side.

2. Right-click on the table name and select New column from the menu, as
shown in Figure 1-1:



Figure 1-1: Adding a new column from the Fields pane

Alternatively, you can highlight the table and click on the New Column
button on the Calculations section of the Home ribbon or the
Calculations section of the Modeling ribbon, as shown in Figure 1-2:

Figure 1-2: Adding a new column from the Home ribbon

Or you can highlight the table and click on the New Column button on
the Calculations section of the Modeling ribbon, as shown in Figure
1-3:



Figure 1-3: Adding a new column from the M odeling ribbon

3. Open the formula editor, and enter the DAX expression that will define
your New Column. Figure 1-4 shows the formula editor in Power BI
Desktop:

Figure 1-4: The formula editor in Power BI Desktop

To create a new column in Excel Power Pivot and Analysis Services, we do
the following:

1. Go into your data model and select the table you want to add the new
column to.

2. Select a cell in the last column labeled Add Column. 

3. In the formula editor, write the expression that defines your new
column. Figure 1-5 shows the formula editor in Excel. Unlike Power
BI, in Excel Power Pivot and Analysis Services, the DAX
expression begins with the assignment symbol (=) and not the column
name:



Figure 1-5: The formula editor in Excel Power Pivot

4. To rename a new column, once you have entered the expression, right-
click on the column name and select Rename Column from the menu, as
shown in Figure 1-6:

Figure 1-6: Renaming a column
It is important to know that, once created, calculated columns are treated just like
another column in a table. And once generated, a calculated value cannot be
changed. Calculated columns can be used in any part of a report and they can be
used to define relationships.

Calculated columns are computed during a data refresh and stored in memory
with the rest of your data model. This is an important point to note when you
are planning and building your data model. On the one hand, with complex
expressions, the time taken to compute them is at the point you refresh the data
and not when you are querying the data. This can improve the user experience,
especially with complex expressions, but you need to remember that each
calculated column will take up space in memory. Although this might not be an
issue with a smaller table, it could have a significant impact on memory use
when you are dealing with large tables. If you have complex expressions



behind your calculated columns, then this could also slow down the time it
takes to refresh the data in your data model.

You would be well advised not to have too many calculated columns in your
data model and to consider whether it would be possible to use a measure
instead, especially if it does not impact the user experience too adversely.



Measures
The other way you can extend your data model is by using measures (also
referred to as calculated fields in Excel 2013). Unlike calculated columns,
which are evaluated row by row using the context of the current row,
measures are used to summarize data by aggregating the values of rows in a
table. They work within the current filter context, which means they are
affected by the current filters, slicers applied, and the highlighted sections of
charts or visuals.

There are two types of measures: implicit and explicit. Implicit measures are
created behind the scenes when you drag a field to the Values area of the
PivotTable Fields list, as shown in Figure 1-7:

Figure 1-7: Creating an implicit measure in the PivotTable Fields dialog



They are also created when you drag a visual on to the desktop of Power BI,
as shown in Figure 1-8:

 
Figure 1-8: Creating an implicit measure with a visual in Power BI Desktop

An explicit measure, on the other hand, is a measure that is specifically
created by you.

A measure must be created if you want to conduct an operation on aggregate
values instead of values on a row-by-row basis. For example, if you need to
calculate the percentage ratio of two columns, you will need to create a
measure that calculates the ratio based on the sum of each column. The
following measure calculates the percentage of returns to sales by dividing the
sum of items returned by the sum of items sold:

Return % = 
DIVIDE (
    SUM ( Sales[ReturnQuantity] ), 
    SUM ( Sales[SalesQuantity] )
)

Measures are calculated once for everywhere they are used in a report. They
are re-calculated every time a report page loads or a user changes a filter or
slicer or highlights part of a chart:



Figure 1-9: A measure being used in a column chart

In Figure 1-9, a measure is used to calculate the number of returns over the
number of sales. This is used for the value in the column chart, with the sales
channel used for the axis. In this example, the measure is calculated four
times, once for each time the filter context changes to reflect each of the four
different stores.

To create a new measure in Power BI Desktop, follow these steps:

1. Start on the report page and highlight the table that you want to add the
new measure to, from the list of tables shown in the Fields pane on the
right-hand side.

2. Next, right-click on the table name and select New measure from the
menu, as shown in Figure 1-10:



Figure 1-10: Creating a new measure from the Fields pane

To create a new measure in Excel Power Pivot and Analysis Services, we do
the following:

1. Go into your data model and select the table you want to add the measure
to.

2. Select a blank cell in the calculation area.
3. In the formula editor, write the expression that defines your new

measure. Figure 1-11 shows a couple of measures in the calculation area
of an Excel table:



Figure 1-11: M easures in the calculation area of a Excel Power Pivot table

The syntax used to create a measure differs slightly depending on the tool you
are using. With Power BI, you use the = assignment operator, whereas with
Excel and Analysis Services, you use the := assignment operator. If you use
the := assignment operator in Power BI, it will automatically be converted
into the = operator.

So, for example, Figure 1-12 shows an example of the syntax used to create a
measure in Power BI Desktop:

Figure 1-12: A measure being created using the formula editor in Power BI Desktop

On the other hand, Figure 1-13 shows an example of the syntax used to create
a similar measure in Excel:

Figure 1-13: A measure being created using the formula editor in Excel Power Pivot

Although DAX requires measures to be defined within a table, they can be
moved between tables without affecting their functionality. In fact, it is good
practice to keep general measures under one table with a name such as Key
Measures.



Calculated columns versus
measures
Although they may look similar, calculated columns and measures operate
very differently. They both use DAX expressions, but they differ in the point
at which they are calculated and in the context of their evaluation:

The values of calculated columns are calculated during a data refresh
and they are evaluated using the current row context. They also take up
memory and disk space and can slow down data loading times during
data refreshes. However, once loaded, they do not impact performance.
A measure is executed every time a value uses it in a report or
chart. Measures are re-calculated every time a page loads. They are
also re-calculated when filters or slicers are changed or a user
highlights different parts of a chart or visual. A measure does not add to
the space used by a data model, but it may impact the speed of user
interactions. Measures operate on aggregates that are defined by the
current filter context.

You will need to use a calculated column whenever you want to do the
following:

Use the value in a slicer.
Use the value in rows or columns of a pivot table.
Use the value on the axes of a chart.
Use the value as a filter condition in a DAX query.
Define an expression that is bound to the current row.

You will need to define a measure whenever you want to do the following:

Use a value that reflects a user's selection of filters, slicers, or
highlighted visuals.
Calculate a ratio.
Calculate a percentage.



It is sometimes possible to calculate the same value using either a calculated
column or a measure, using different DAX expressions. In most cases, where
this is possible, you should use a measure, as this will not increase the size
of your data model and use extra memory or disk space. This is especially
important if you are working with a table that contains a large number of
records.

When naming measures, you should not include the table name in the measure
name. Although a measure is created under a table, it does not strictly belong
to that table. If you do not include the table name, it can easily be moved
between tables if necessary. It also makes it easier to identify as a measure.
On the other hand, calculated columns should include the table name.



Evaluation contexts – part 1
Understanding the concept of the evaluation context in DAX is probably the
most important concept you will need to learn, if you are to master the use of
DAX. In this section, we will have a brief introduction to the concept and
will take a more in-depth look in later chapters.

Evaluation contexts are the basis of advanced DAX functionality. They are
used to determine the evaluation of a DAX formula and the corresponding
result that's given, which will vary depending on the current context. It is this
ability that enables you to perform dynamic analysis, in which the results of a
DAX formula can change to reflect the current row or a cell selection, or any
filters or slicers that may be applied. Understanding context and using context
effectively is essential for building powerful DAX formulas and being able
to effectively troubleshoot problems with DAX expressions.

There are two types of evaluation contexts in DAX:

Row context
Filter context

You may also see references to a query context in Microsoft documentation,
but this is essentially another form of filter context.



Row context
The easiest way to think of row context is as the current row in a table. It
applies when you add a calculated column to a table. When you use an
expression to define your calculated column, it is executed for every row in
the table. For example, if you have a table with a thousand rows in it, the
expression will be evaluated one thousand times, once for every row in the
table, each with a different row context.

The row context can use values from the same row of the table or rows from
related tables:

Figure 1-14: A calculated column being created in Excel Power Pivot

Figure 1-14 shows a calculated column called Sale amount that multiplies the
value in the Quantity column by the value in the Unit Price column. Once the
data is loaded into the data model from the data source, the calculated column
is populated by iterating through each row of the table and calculating the
value based on the values contained in the Quantity column and the Unit
Price column, for that row. In other words, the value of the calculated column
is generated based on the row context as defined by that individual row.

If you have a relationship between tables, the expression used to define a
calculated column can also access the columns of a related table by using the
RELATED function:



Figure 1-15: The one-to-many relationship between Product and Sales

In Figure 1-15, we can see that there is a one-to-many relationship between
the Product table and the Sales table. By creating a calculated column with the
following expression, it's possible to add the total weight to the Sales table by
multiplying the value of the Quantity column by the value of the Weight column
in the related Product table:

=
IF (
    ISBLANK ( RELATED ( 'Product'[Weight] ) ),
    0,
    [Quantity] * RELATED ( 'Product'[Weight] )
)

The following screenshot, Figure 1-16, shows the new total weight column
added to the Sales table, with values generated for each row:



Figure 1-16: The total weight column added to the Sales table

In the preceding example, the ISBLANK function has been used in conjunction
with the IF function to return a zero when a value is not returned from the
related table. This would happen when a product in the Sales table does not
exist in the related Product table.



Filter context
The filter context is more complex to understand than the row context, but it
can be defined simply as the set of filters that are applied to a data model
before the evaluation of a DAX expression begins, which will alter the value
returned.

The easiest way to illustrate the filter context is by using a PivotTable:

Figure 1-17: Pivot table showing total sales amount by calendar year for product categories

In Figure 1-17, the PivotTable shows the total sales amount of products by
calendar year for each product category. The highlighted cell, showing
$310,194.59, has a filter context for the calendar year 2008 and the product
category of computers.

The filter context has the following sources of filter:

Row selection
Column selection
Slicer selection
Filter selection
A PivotTable filter



Figure 1-18 shows a Power BI report that has slicers for product category
and channel. The total sales amount shown in the card visual is the total sales
amount with a filter context for the product category of Cell phones and
where the sales channel is equal to Catalog:

Figure 1-18: Power BI report with slicers for product category and channel

The filter context will automatically propagate through relationships defined
in the data model. In Excel Power Pivot and SQL Analysis Services, only the
one-to-many direction is supported, but Power BI has the facility for
relationships to be bi-directional.

With a one-to-many relationship, a filter applied to the one side of the
relationship automatically filters the rows of the table on the many side of the
relationship. If the table on the many side has another table that has a one-to-
many relationship with it, the filters do not affect that table, unless you set the
relationship to be bi-directional (in Power BI only). We will look at
relationships between tables in more detail when we come to looking at data
modeling.



Using the CALCULATE function
So far, we have only looked at implicit filter context, a context created when
you use filters or slicers on a Power BI report or add rows and columns to a
PivotTable in Excel. However, it is also possible to create an explicit filter
context using the DAX CALCULATE function.

The CALCULATE function in DAX evaluates an expression, as an argument, with a
context that is modified by the filters that are passed in one or more additional
arguments to the function. It is possibly the most important and complex
function in the whole of the DAX language. Although it appears very simple
when you first look at it, how it can be used and how it can alter an existing
filter context can quickly become confusing.

While other functions can remove either part or all of an existing filter
context, the CALCULATE function, along with the associated CALCULATETABLE function,
are unique in DAX in that they are the only functions that can alter the context.
It is this ability that makes them so powerful and so useful to you as a BI
professional.

The following is the syntax of the CALCULATE function:

CALCULATE ( <expression>, <filter1>, <filter2>, … )

The function has only one mandatory argument: the expression that is to be
evaluated. It will then take one to many optional filter arguments. These
optional filter arguments are combined to form the overall filter, which is
applied to the expression given as the first argument.

Some restrictions apply to Boolean expressions used as arguments:

Expressions cannot reference a measure.
Expressions cannot use a nested CALCULATE function.
Expressions cannot use any function that scans a table or returns a table,
including aggregation functions.



However, expressions can use functions that look up single values or
calculate a scalar value.

The power of the CALCULATE function comes from its ability to alter the existing
filter context of the expression passed in the first argument, by the n number of
filter conditions specified by the following arguments. This is done according
to the following:

If the filter context specified by a filter condition already exists, it will
override the existing filter context with the new one specified in the
expression.
If the filter context does not exist at all, it will add a new one according
to the filter conditions specified.

As you can see, the syntax for the CALCULATE function is straightforward but
following what it is doing is more complex. The best way to show this is
through a hands-on example.

In the following example, we have what is possibly the most common
scenario for using the CALCULATE function, which is to take a value and calculate
what percentage it is of an overall total.

Let's start by creating a new measure to calculate the sum of a column called
SaleQuantity in a table called Sales, by using the following DAX expression:

SumOfSalesQuantity =
SUM ( Sales[SalesQuantity] )

In the screenshot shown in Figure 1-19, the measure has been added to a table
in Power BI, along with the manufacturer. The manufacturer becomes the filter
context for the measure, giving a breakdown of sales quantity by
manufacturer:



Figure 1-19: The SumOfSalesQuantity  measure added to a table in Power BI Desktop

Now, to be able to calculate the sales quantity of each manufacturer as a
percentage of the overall sales quantity, each row will need to know what the
overall sales quantity is. To do this, you need an expression that will amend
the filter context by removing the manufacturer from the filter. This is where
the CALCULATE function comes in.

The next step is to create another measure, which again will calculate the sum
of the SalesQuantity column, but uses the ALL function to amend the current
filter context:

TotalSalesQuantity =
CALCULATE (
    SUM ( Sales[SalesQuantity] ),
    ALL ( 'Product'[Manufacturer] )
)

In this code, we see the following:



The first argument calculates the total sum of values in the
SalesQuantity column of the Sales table.
The next argument, the first filter argument, will effectively amend the
current filter context by using the ALL function to remove any existing
filters on the Manufacturer column of the Product table.

Figure 1-20 shows this measure added to the Power BI table:

Figure 1-20: The TotalSalesQuantity  measure added to a table in Power BI Desktop

As you can see, for each row, the filter context has been altered by the
TotalSalesQuantity measure and returns the overall sales quantity, regardless
of the manufacturer.

With these two new measures, it is possible to create a measure to calculate
the sales quantity of each manufacturer as a percentage of the overall sales
quantity:

%SalesQuantity =
DIVIDE (



    // The sum of sales quantity measure - current filter context
    [SumOfSalesQuantity],
    // The sum of sales quantity measure - current filter context altered
    // to include ALL manufacturers
    [TotalSalesQuantity]
)

In this example, we use the DIVIDE function. This function divides the value
returned by the measure passed as the first argument (the numerator), by the
value returned by the measure passed as the second argument (the
denominator). The DIVIDE function also allows for an optional third argument
that specifies the alternative value to be returned when division by zero
results in an error. When this third argument is not provided, as in this
example, the default alternative of BLANK is returned.

Figure 1-21 shows this percentage measure added to the Power BI table:



Figure 1-21: The %SalesQuantity  measure added to a table in Power BI Desktop

Finally, it's possible to rewrite this measure as a self-contained measure that
doesn't require the intermediate measures of SumOfSalesQuantity and
TotalSalesQuantity. 

Let's have a look at the following example, which demonstrates this:

%SalesQuantity2 =
DIVIDE (
    // The sum of sales quantity - current filter context
    SUM ( Sales[SalesQuantity] ),
    // The sum of sales quantity - current filter context altered
    // to include ALL manufacturers



    CALCULATE (
        SUM ( Sales[SalesQuantity] ),
        ALL ( 'Product'[Manufacturer] )
    )
)

This is a relatively simple example of the CALCULATE function being used. In Chapt
er 5, Getting it into Context, there will be some more complex examples
when we look at evaluation contexts in more detail.



Summary
In this chapter, we covered a brief introduction to the DAX language, looking
at what it is and why learning it is important if you want to get the most out of
Excel Power Pivot, SSAS Tabular, or Power BI. You should now have an
understanding of the different data types and operators available in DAX and
how these operators implicitly convert data to the required type. You have
learned about calculated columns and measures, including the differences
between them and how and when you can make use of them.

You have also learned how to make use of these features in DAX to expand
your data model, creating new information from existing data and giving you
even greater insights into your data. Finally, you have learned about the
evaluation context, with the row context and the filter context, and how you
can modify an existing filter context using the CALCULATE function.

In the next chapter, we will move on to look at using variables in DAX
formulas and how these can make your DAX code easier to read, as well as
potentially more efficient.



Using DAX Variables and
Formatting
In this chapter, we will focus on how to use DAX variables and the overall
impact of using them in your code. The usage of DAX variables will not only
improve the re-usability of your code but potentially make it more efficient
as well. Apart from this, we will talk about the recommended formatting
rules for DAX code and how using these features will help us identify and
debug errors in our code.

Then, you will be introduced to the VAR and RETURN keywords and will learn
how to effectively use them within your DAX code. We will also go through
a practical example of using variables and formatting rules to debug a DAX
measure that is not working correctly.

This chapter has been broken down into the following sections:

Getting started with DAX variables
Formatting your DAX code
Debugging errors in your DAX code



Getting started with DAX variables
Variables were first introduced into the DAX language with Power BI in
2015 and with the 2016 versions of Excel and SSAS Tabular.

Variables allow you to store hard coded values or the results that are
returned by a DAX expression. They can store both scalar values and tables
and can be used within the definitions of calculated columns, measures, and
tables.

A variable is declared using the VAR keyword, and the overall process of
declaring and using a variable uses the following syntax:

VAR <variableName> = <DAX expression>
RETURN <DAX expression including variableName>

When defining an expression, you can use as many variables as you need;
each variable is declared using its own VAR keyword. Variables can be used
for declaration purposes when defining other variables, as well as to return
values in the expression given after the RETURN keyword.

The RETURN keyword is used to define the return expression, which is then used
to define the calculated column, measure, or table.

Once a variable has been declared and initialized, it cannot be assigned
another value. So, for example, the following would produce an error:

VAR varOne = 1
VAR varOne = varOne + 1
RETURN varOne

Instead, you should declare a second variable and then use the first variable
as part of the second variable's declaration. Then, you can use the second
variable in the expression being used with the RETURN keyword, as shown in
the following example:



VAR varOne = 1
VAR varTwo = varOne + 1
RETURN varTwo

Variables in DAX are not declared with data types; they are automatically
allocated to the type of the value being assigned to them.

In the following example, the varTextExample variable is being assigned with
the data type of text:

VAR varTextExample = "Hello World"
RETURN varTextExample

In the next example, the varTableExample variable is being assigned as a table,
which, in this case, is a copy of the Products table that has been filtered so
that it only includes products where the ClassName is equal to Deluxe:

VAR varTableExample = FILTER ('Product', 'Product'[ClassName] = "Deluxe")
RETURN varTableExample

When using variables of different types with an operator, they will follow the
same rules of implicit data type assignment, which we described in Chapter 1,
What Is DAX?. In the following example, the first variable, varOne, is assigned
the numeric data type, while the second variable, varTwo, is assigned the text
data type. The third variable, varThree, is declared by combining the first two
variables using the concatenate operator, and is automatically assigned with
a data type of text:

NumberAndText1 =
VAR varOne = 1
VAR varTwo = "2"
VAR varThree = varOne & varTwo
RETURN varThree

Figure 2-1 shows the output of the NumberAndText1 measure, which was
defined using the concatenate operator in the preceding code:



Figure 2-1: The result of the NumberAndText1 measure

In the following example, both the first and second variables are assigned,
just like in the previous example. However, on this occasion, the third
variable combines the first two variables using the addition operator. This
time, it is automatically assigned as a numeric data type:

NumberAndText2 =
VAR varOne = 1
VAR varTwo = "2"
VAR varThree = varOne + varTwo
RETURN varThree

Figure 2-2 shows the output of the NumberAndText2 measure, which was
defined using the addition operator in the preceding code:

Figure 2-2: The result of the NumberAndText2 measure

When it comes to naming variables, you cannot use names that are already in
use by tables, or names that are used as DAX keywords. In addition, the
following are the limitations when it comes to naming a variable:



Variable names cannot contain blank spaces
Delimiters such as square brackets and apostrophes are not allowed
The supported characters are a-z, A-Z, 0-9
0-9 cannot be used as a first character
A double underscore (__) is allowed as a prefix of a name



Variable nesting
It is possible to nest variables within the declaration of another variable,
which offers multiple levels of scope. Each level of variable nesting starts
with the VAR keyword and ends with the RETURN keyword. An expression may
only refer to variables that have been declared within the same level of
scope or higher.

The following measure definition is an example of variable nesting:

NestedVariableExample1 = 
// The first level of scope is defined by the first VAR keyword
VAR varLevelOneA = "Level 1"
VAR varLevelOneB = 
    // The second level of scope is defined using the VAR
    // keyword in the definition of this variable.
    // Variables within this scope can access variables from
    // this level or from the first level of scope.
    VAR varLevelTwoA = varLevelOneA & " and Level 2"
    VAR varLevelTwoB = varLevelTwoA
    // The second level of scope is closed with the RETURN keyword
    RETURN varLevelTwoB
// Control is passed back to the first level of scope.
// Variables defined in the second level of scope cannot be
// directly referenced by this first level.
RETURN varLevelOneB

Figure 2-3 shows the output of the NestedVariableExample1 measure that
was defined using the preceding code:

Figure 2-3: The result of the NestedVariableExample1 measure

This example can be broken down as follows:

1. The first level of scope is defined with the first use of the VAR keyword.
2. The varLevelOneA variable is declared with the text "Level 1".



3. The second level of scope is defined using the VAR keyword within the
declaration of the second variable, varLevelOneB.

4. The varLevelTwoA variable is declared using the varLevelOneA variable
(which it can access since it is from a higher level of scope)
concatenated with the text "and Level 2". The varLevelTwoA variable now
holds the value "Level 1 and Level 2".

5. The varLevelTwoA variable is declared using the value stored in
varLevelTwoB, which it can access since it is defined at the same level. The
varLevelTwoB variable now also holds the value "Level 1 and Level 2".

6. The second level of scope is closed with the RETURN keyword, which
returns the value stored in the varLevelTwoB variable to
the varLevelOneB variable. The varLevelOneB variable now also holds the
value "Level 1 and Level 2".

7. The first level of scope is closed with the second RETURN keyword, which
returns the value stored in the varLevelOneB variable to
the NestedVariableExample1 measure.

The following code takes variable nesting to the next level. See if you can
follow what it is doing while using the previous example as a guide:

NestedVariableExample2 =
VAR varLevelOneA = "Level 1"
VAR varLevelOneB =
    VAR varLevelTwoA = " & Level 2"
    VAR varLevelTwoB =
        VAR varLevelThree = varLevelOneA & varLevelTwoA
        RETURN varLevelThree
    RETURN varLevelTwoB
VAR varLevelOneC =
    VAR varLevelFour = varLevelOneB & " & Level 3"
    RETURN varLevelFour
RETURN varLevelOneC

Figure 2-4 shows the output of the NestedVariableExample2 measure that
was defined using the preceding code:

Figure 2-4: The result of the NestedVariableExample2 measure



This example introduces a third level of scope within the declaration of the
varLevelTwoB variable. This level has access to the variables declared in level
1 and level 2, as well as those declared at its own level. There is another
level of scope that's created in the declaration of the varLevelOneC variable.
This level of scope only has access to the variables that have been declared
in its own level and those defined in level 1. It cannot access variables that
have been declared in the scope of levels two and three.



Using variables with measures,
calculated columns, and tables
Using variables when you define your measures will make your DAX code
much easier to read. In some cases, it can also make your code perform more
efficiently. We will look at the potential of improving code performance using
variables in more detail when we look at optimizing DAX queries in Chapter
13, Optimizing Your DAX Queries.

The following code defines a measure that counts the number of products in a
table, where the value of the ClassName column is equal to Deluxe:

Deluxe Products =
VAR varDeluxeProducts =
    FILTER ( 'Product', 'Product'[ClassName] = "Deluxe" )
RETURN COUNTROWS( varDeluxeProducts )

This example can be broken down as follows:

1. The measure is defined using the name Deluxe Products.
2. The VAR keyword is used to declare a variable called varDeluxeProducts.
3. The variable is defined using the FILTER function, which references the

Product table and the filters for rows where the value in the ClassName
column is equal to Deluxe.

4. The varDeluxeProducts variable inherits the table type and is used as the
argument to the COUNTROWS function, which is used by the RETURN keyword to
return the number of rows in the filtered table.

When using variables in an expression that is used to define a calculated
column, you automatically have access to the values of the other columns in
the same row.

The following example creates a new column called UnitProfit that calculates
the profit for each product, based on the unit price minus the unit cost of each
product:



UnitProfit =
VAR varUnitCost = 'Product'[UnitCost]
VAR varUnitPrice = 'Product'[UnitPrice]
RETURN varUnitPrice - varUnitCost

This example can be broken down as follows:

1. The column is defined with the name UnitProfit.
2. The first VAR keyword is used to declare a variable called varUnitCost,

which stores the value held by the UnitCost column of the Product table
for the current row.

3. The second VAR keyword is used to declare a variable called varUnitPrice,
which stores the value held by the UnitPrice column of the Product table
for the current row.

4. These two variables are then used with the RETURN keyword and the minus
operator to take the value of the varUnitCost variable away from the value
of the varUnitPrice variable, giving the value of unit profit.

The screenshot in Figure 2-5 shows the Product table with the new UnitProfit
column added:



Figure 2-5: The Product table with the new UnitProfit column added
When using variables in the definition of a calculated column, it is important to
remember that the RETURN keyword should only return a single value, and not a table.

Finally, variables can be used in the definition of an expression to create a
new table.

The following example creates a new table called Deluxe Products Top 20
Sellers that shows the top 20 best-selling deluxe products by sales quantity.
This new table contains columns for the product name, the total sales quantity,
and the total sales amount:

Deluxe Products Top 20 Sellers =
VAR varDeluxeProducts =
    FILTER (



        'Product',
        'Product'[ClassName] = "Deluxe"
    )
VAR varDeluxeProductsSummarized =
    SUMMARIZE (
        varDeluxeProducts,
        'Product'[ProductName],
        "TotalSalesQuantity", SUM ( Sales[SalesQuantity] ),
        "TotalSalesAmount", SUM ( Sales[SalesAmount] )
    )
VAR varDeluxeProductsTop20Sales =
    TOPN (
        20,
        varDeluxeProductsSummarized,
        [TotalSalesQuantity]
    )
RETURN
    varDeluxeProductsTop20Sales

This example can be broken down as follows:

1. The table is defined with the name Deluxe Products Top 20 Sellers.
2. The first VAR keyword is used to declare a variable called

varDeluxeProducts, which stores the values returned by the FILTER function.
This function filters for rows in the Product table that have a ClassName
equal to Deluxe.

3. The second VAR keyword is used to declare a variable called
varDeluxeProductsSummarized, which stores the value returned by the SUMMARIZE
function. This function takes the table stored in
the varDeluxeProducts variable and groups it by the ProductName column.
Then, it adds new columns, which calculate the sum of sales quantity and
sum of the sales amount for each product.

4. Finally, the third VAR keyword is used to declare a variable called
varDeluxeProductsTop20Sales. This variable uses the TOPN function to filter
the varDeluxeProductsSummarized variable for the top 20 deluxe products,
based on the value of TotalSalesQuantity.

The screenshot in Figure 2-6 shows the contents of the new Deluxe Products
Top 20 Sellers table:



Figure 2-6: Table showing output from the new Deluxe Products Top 20 Sellers table
When using variables in the definition of a calculated table, it is important to
remember that you must return a table with the RETURN keyword and not a single value.



Formatting your DAX code
In addition to using variables to make your DAX code easier to read, it is also
important to format your code in some way. While there is no official set of
rules for formatting your DAX code, following some good formatting
guidelines is essential if you want to make DAX easier to work with. Not only
is poorly formatted DAX code difficult to read, but it is almost impossible to
interpret. In addition, well-formatted DAX code is much easier to debug when
things don't work as expected.

Since it is a functional language, a DAX expression will consist of a call to a
DAX function, along with some parameters. These parameters can be static
arguments, or they can be calls to other DAX functions. All but the simplest
DAX expressions will consist of nested functions calls, often many layers
deep.

The following example shows a relatively simple DAX expression that
creates a measure to calculate the month-over-month percentage change in
sales amount:

SalesAmount MoM% = DIVIDE(SUM('Sales'[SalesAmount]) - 
CALCULATE(SUM('Sales'[SalesAmount]),DATEADD('Calendar'[DateKey].[Date], -1, MONTH)), 
CALCULATE(SUM('Sales'[SalesAmount]),DATEADD('Calendar'[DateKey].[Date], -1, MONTH)))

Even with a simple measure like this, with no formatting, the DAX code is
difficult to read and understand.

The following example is the same measure, but this time it is formatted and
also makes uses of a variable to store the value of the previous month's sales
amount:

SalesAmount MoM% 2 =
VAR varPrevMonth =
    CALCULATE (
        SUM ( 'Sales'[SalesAmount] ),
        DATEADD (
            'Calendar'[DateKey].[Date],
            -1,
            MONTH



        )
    )
RETURN
    DIVIDE (
        SUM ( 'Sales'[SalesAmount] ) - varPrevMonth,
        varPrevMonth
    )

Now, it is easier to understand what the measure is doing. This can be broken
down as follows:

1. First, it calculates the total sales amount for a previous month's date.
2. It stores this value in the varPrevMonth variable.
3. Then, it takes a value of varPrevMonth away from the total sales amount for

the current date.
4. Finally, it divides the value from the previous step by the value of

varPrevMonth.

The following are a basic set of formatting rules that you should follow to
make your DAX code easier to read:

Always place a new function call on a new line.
Place the first bracket for a function call on the same line as the function.
If a function only has one argument, then place that on the same line as
the function call.
If a function has more than one argument, then place each argument on a
new line.
If an argument is on a new line, indent four spaces from the function call.
The closing bracket for a function call should be lined up with the
function call, and not indented.
Keep commas separating arguments on the same line as the previous
argument.
If you have to spread a function call over more than one line, ensure that
operators are the first characters.
Use a space after brackets.
Use a space after operators.
Use a space after a comma, but not before it.

When referencing table names, calculated columns, and measures, follow
these guidelines:



Do not use a space between the table name and the column name.
Only use single quotes for table names when required (that is, when table
names have spaces).
Ensure you always include the table name with column references. It
should be written as TableName[ColumnName].
Do not include a table name with a measure reference. It should be
written as [MeasureName].

Although these simple rules may be difficult to follow at first, they will soon
become second nature, and they will make a tremendous difference to you
when working with your DAX code. As you will see in the next section, you
will more than save on the extra time it takes to format your code with the
time you save in debugging problems.

If you want some help formatting your DAX code, head on over to www.daxformat
ter.com, where you will find a very useful tool called DAX Formatter. This is
a free tool that will transform your raw DAX into clean, readable code.

Go to the website and paste in your unformatted DAX code, as shown in
Figure 2-7:

Figure 2-7: Pasting unformatted DAX into DAX Formatter

http://www.daxformatter.com/


Here, I am using the month-over-month example we looked at earlier. Click
on the FORMAT button; the formatting tool will format your code using a
similar set of rules to the ones we looked at previously:

Figure 2-8: DAX code formatted using DAX Formatter

The screenshot in Figure 2-8 shows the same code after it has been
reformatted by the DAX Formatter tool. As you can see, it is very similar to
the code we used in our earlier example. However, this time, the reformatted
code does not use a variable; however, it does apply many of the formatting
rules that were listed, and it is much easier to read and understand. 



Debugging errors in your DAX code
Sometimes, you may end up writing a DAX expression that does not work as
expected. It may return an error that needs to be handled, or it may not return
the desired output.

Many other programming languages come with built-in tools that allow you to
debug code line by line. However, there are no built-in tools available with
DAX. It simply consists of functions that parameters can be passed to.

For simple DAX expressions, debugging should be fairly straightforward.
However, for code where you have multiple layers of nested expressions, it
may become necessary to break the expression down into smaller, more
manageable parts. By reducing the code into smaller segments, you will be
able to inspect different values and confirm which ones are returning the
expected results and which ones are not. This is where using variables
becomes invaluable when debugging code as it allows you to break your code
down and assign each segment to its own variable. Then, you can change the
expression for the RETURN keyword in order to return the values of different
variables.

Formatting the code in an appropriate manner is also important when it comes
to debugging code as it makes it much easier to read the code and follow what
it is should be doing. With unformatted DAX code, this is almost impossible
with all but the simplest of expressions.

Now, we are going to run through a practical example of how you can use
good formatting, along with a series of variables, to debug a poorly formatted
and non-working DAX measure.

The following code is for a measure, which should display a dynamic report
title based on the values that were selected in the slicer:

SelectedManufacturers = IF 
(COUNTROWS(VALUES('Product'[Manufacturer]))=0,"","Manufactured by 
"&IF(COUNTROWS(VALUES('Product'[Manufacturer]))=COUNTROWS(ALL('Product'[Manufacturer]



)),"all 
manufacturers",IF(COUNTROWS(VALUES('Product'[Manufacturer]))=1,"",CONCATENATEX(TOPN(C
OUNTROWS(VALUES('Product'[Manufacturer])),VALUES('Product'[Manufacturer]),'Product'[M
anufacturer],ASC),'Product'[Manufacturer],",",'Product'[Manufacturer],ASC)&" and 
")&EXCEPT(VALUES('Product'[Manufacturer]),TOPN(COUNTROWS(VALUES('Product'[Manufacture
r])),VALUES('Product'[Manufacturer]),'Product'[Manufacturer],ASC))))

However, the visual that's been set up to display the measure does not appear
to match what has been selected in the slicer, as shown in Figure 2-9:

Figure 2-9: Visual not matching value selected in slicer

As it is, the measure has no formatting, and it is almost impossible to work out
what it is doing. So, the first step is to apply some formatting, following the
rules we mentioned in the previous section.

The following is the same measure, but with formatting applied:

SelectedManufacturers = 
 IF (
     COUNTROWS ( VALUES ( 'Product'[Manufacturer] ) ) = 0,
     "",
     "Manufactured by "
         & IF (
             COUNTROWS ( VALUES ( 'Product'[Manufacturer] ) )
                 = COUNTROWS ( ALL ( 'Product'[Manufacturer] ) ),
             "all manufacturers",
             IF (
                 COUNTROWS ( VALUES ( 'Product'[Manufacturer] ) ) = 1,
                 "",
                 CONCATENATEX (



                     TOPN (
                         COUNTROWS ( VALUES ( 'Product'[Manufacturer] ) ),
                         VALUES ( 'Product'[Manufacturer] ),
                         'Product'[Manufacturer], ASC
                     ),
                     'Product'[Manufacturer],
                     ",",
                     'Product'[Manufacturer], ASC
                 ) & " and "
             )
                 & EXCEPT (
                     VALUES ( 'Product'[Manufacturer] ),
                     TOPN (
                         COUNTROWS ( VALUES ( 'Product'[Manufacturer] ) ),
                         VALUES ( 'Product'[Manufacturer] ),
                         'Product'[Manufacturer], ASC
                     )
                 )
         )
 )

While this is a start and makes the code easier to read, it still doesn't help
isolate the cause of the problem. So, the next step is to convert the DAX code
so that it can use variables. Follow these steps to do so:

1. Looking at the code, the first candidate that will be converted into a
variable is the function call to get the list of selected manufacturers:

VAR SelectedManufacturers =
     VALUES ( 'Product'[Manufacturer] )

2. Next, we need to create another variable that will hold the value for the
number of selected manufacturers:

VAR NumberOfSelectedManufacturers =
     COUNTROWS ( SelectedManufacturers )

3. Then, we need to create a variable that will hold the value for the total
number of manufacturers that it is possible to select:

VAR NumberOfPossibleManufacturers =
     COUNTROWS ( ALL ( 'Product'[Manufacturer] ) )

4. Finally, we need to create two additional variables that use code from
the original DAX measure. The first, AllButLastSelectedManufacturer, should
get a list of all the values that were selected in the slicer, except the last



one. The last variable, LastSelectedManufacturer, should get the value of the
last select item that was selected in the slicer:

VAR AllButLastSelectedManufacturer =
     TOPN (
         NumberOfSelectedManufacturers,
         SelectedManufacturers,
         'Product'[Manufacturer], ASC
     )
 VAR LastSelectedManufacturer =
     EXCEPT ( SelectedManufacturers, AllButLastSelectedManufacturer )

5. The final step is to create the return expression, where we will replace
all of the existing expressions with the variables we created in steps 1 to
4. Once completed, the revised DAX code for the measure will be as
follows:

SelectedManufacturers = 
 VAR SelectedManufacturers =
     VALUES ( 'Product'[Manufacturer] )
 VAR NumberOfSelectedManufacturers =
     COUNTROWS ( SelectedManufacturers )
 VAR NumberOfPossibleManufacturers =
     COUNTROWS ( ALL ( 'Product'[Manufacturer] ) )
 VAR AllButLastSelectedManufacturer =
     TOPN (
         NumberOfSelectedManufacturers,
         SelectedManufacturers,
         'Product'[Manufacturer], ASC
     )
 VAR LastSelectedManufacturer =
     EXCEPT ( SelectedManufacturers, AllButLastSelectedManufacturer )
 RETURN
     IF (
         NumberOfSelectedManufacturers = 0,
         "",
         "Manufactured by "
             & IF (
                 NumberOfSelectedManufacturers = 
NumberOfPossibleManufacturers,
                 "all manufacturers",
                 IF (
                     NumberOfSelectedManufacturers = 1,
                     "",
                     CONCATENATEX (
                         AllButLastSelectedManufacturer,
                         'Product'[Manufacturer],
                         ", ",
                         'Product'[Manufacturer], ASC
                     ) & " and "
                 ) & LastSelectedManufacturer
             )
     )



While this doesn't fix the error, we are now in a much better place to start
debugging the code. We'll start by creating a copy of the measure, but with the
code after the RETURN keyword removed. Then, we can start inspecting the
results of each variable by placing each variable after the RETURN keyword and
testing them one by one. Since this is a measure and the first variable returns a
table, it will need to be used with the COUNTROWS function so that it returns a
single number instead. In this case, it should return the number of
manufacturers we selected in the slicer.

So, the code for testing the first variable should look like this:

SelectedManufacturersTest =
 VAR SelectedManufacturers =
     VALUES ( 'Product'[Manufacturer] )
 VAR NumberOfSelectedManufacurers =
     COUNTROWS ( SelectedManufacturers )
 VAR NumberOfPossibleManufacturers =
     COUNTROWS ( ALL ( 'Product'[Manufacturer] ) )
 VAR AllButLastSelectedManufacturer =
     TOPN (
         NumberOfSelectedManufacurers,
         SelectedManufacturers,
         'Product'[Manufacturer], ASC
     )
 VAR LastSelectedManufacturer =
     EXCEPT ( SelectedManufacturers, AllButLastSelectedManufacturer )
 RETURN
     COUNTROWS ( SelectedManufacturers )

With Power BI Desktop, I can use a card visual to see the value of the
variable that's being returned. For this variable, the result is as expected, as
shown in Figure 2-10:



Figure 2-10: Debugging code using the COUNTROWS function

Using this method, it is possible to go through all of the variables to see if
they return the values that we expected. In this case, when the
AllButLastSelectedManufacturer variable is tested, it returns one more row than
expected. In fact, the variable declaration should be one less than the value
being returned by the NumberOfSelectedManufacturers variable.

So, the correct code should be as follows:

VAR AllButLastSelectedManufacturer =
    TOPN (
        NumberOfSelectedManufacturers - 1,
        SelectedManufacturers,
        'Product'[Manufacturer], ASC
    )

With the code for the measure corrected, it now returns the correct dynamic
title based on the manufacturers selected in the slicer, as shown in Figure 2-
11:



Figure 2-11: DAX code corrected to display dynamic title based on selected values of a slicer

Although this method of debugging is more complex compared to the other
programming languages, it still provides us with a practical way to inspect
and fix errors in our DAX code.

In this example, rather than looking at how the code for the measure works, you
should focus more on the method that's being used to inspect the code and identify
the cause of the problem.

Using variables allows you to break down your code into smaller parts and
understand how it is working, especially in relation to interactions with
filters, slicers, and other visuals.



Summary
In this chapter, you learned how to add variables to your DAX code using the
VAR and RETURN keywords, as well as how using variables will make
your code easier to read. You learned about nesting variables and about the
different levels of scope in which variables can exist and interact with each
other.

Then, you went through some practical examples of variables being used to
create measures, calculated fields, and calculated tables. You also looked at
the advantages of following set formatting rules when writing DAX
code. Finally, you went through a practical example of how to use both of
these features to help you debug your code.

In the next chapter, we will learn about the importance of data models and the
different types of schema. We'll look at DAX data modeling concepts, how
to load data into a data model, and how DAX can be used to extend a data
model.



Building Data Models
In this chapter, you will learn about the importance of building a well-
defined data model, both from the point of view of a BI professional and in
terms of making DAX code easier to write.

By the end of this chapter, you will have learned about the basics of good
data modeling and why it is important to have a well-structured data model.
You'll learn about importing data from different data sources and
transforming it into a structure that is easy for both you and your end users to
understand. Then, we'll look at a couple of different schema designs as well
as some data modeling concepts. There will also be some hands-on examples
of loading data, creating relationships, and using DAX functions to extend
your model through the addition of calculated columns, calculated tables, and
measures. Finally, you'll learn how to extend your data model further by
using DAX functions to create a custom data table.

This chapter has been broken down into the following sections:

Introduction to data modeling
Data modeling concepts in DAX
Getting data into your data model
Extending your data model
It's a date



Introduction to data modeling
Before you start using a report or writing DAX expressions, you need to build
the underlying data model. You can think of a data model like the chassis of a
sports car. No matter how good the car looks, if it has a poorly designed
chassis, it will give a poor driving experience. In the same way, no matter
how good a report might look, if it's built using a poorly designed data model,
then it won't be very easy to work with. Worse still, the report may contain
inaccurate information.

In addition to making it easier to work with DAX expressions, a well-
structured data model can also help to reduce the overall size of your Excel
spreadsheet or Power BI Desktop file. Through careful planning, a well-
designed data model can also improve performance.

The process of building a data model begins with importing data into tables
and creating the relationships between them. Then, you refine the data model
by removing or hiding columns that will not be used and by checking the
remaining columns to ensure they use the correct data types and formats. You
can refine the data model further by appending and merging tables to simplify
the structure. Finally, you can add hierarchies and extend the data model by
using DAX functions to create calculated columns and tables and measures.

A data model consists of the following elements:

Data
Tables
Relationships
Hierarchies
Calculated columns
Measures

To start with, a data model defines how you connect to your source data. You
can import data from a large number of different data sources using many



different file formats. The following are some examples of the file types you
can connect to using Excel Power Pivot:

Excel
Text/CSV
XML
JSON

In addition, you can also connect to the following databases:

SQL Server
Microsoft Access
SQL Server Analysis Services Database
ODBC
OLE DB

If you are using Power BI Desktop, you can choose from even more data
sources. The screenshot in Figure 3-1 shows the data connection screen in
Power BI Desktop and shows the vast array of connection options available.
Monthly updates to Power BI Desktop regularly increase this list with the
addition of new data source connectors:





Figure 3-1: The data connection screen in Power BI Desktop

In addition, it is also possible to create custom connectors, meaning that you
can connect to almost any data source.

In a typical data model, you might load data from several different sources.
For example, you might load some of your data from a SQL Server database,
some of it from an Access database, and some of it from Excel spreadsheets
or flat files. You might even import data directly from a source system using
an API service.

When you import data into your model, you are loading a copy of it into memory.
There is also the option to use a method of connecting called DirectQuery, where the
data remains in the data source and only the metadata is kept in the data model.
However, this method of connection comes with some limitations. These will not be
covered in this book as they are out of scope.

Once imported, the data is stored in tables, much like in a database. However,
before it is ready to use, you should do the following:

Merge and append tables to simplify the data model.
Create or amend relationships between the tables.
Rename tables and columns to something more in line with business
requirements.
Remove columns that will not be used.
Hide columns that are required but should not be seen by end users.
Ensure the columns have been defined with the correct data types.
Decide on the appropriate formats for columns.
Add hierarchies.
Create calculated columns, calculated tables, and measures.

Building a well-designed data model is important as it underpins your entire
report. Getting it right from the start will make the process of building your
report much easier. Not only will it potentially make your report more
efficient, but it will also make your DAX code easier to write and understand.

Although your data model may look like other transactional databases, it
serves a very different purpose. With a transactional database, the goal is to
efficiently add, amend, and delete data. When designing a data model for



business analysis purposes, the goal is to allow for efficient querying and
aggregation of data.

The first step in building any data model for reporting purposes is to
understand the business requirements. You need to know requirements such as
where the data will be coming from, how the data will be filtered and sliced,
and how the data will be aggregated.

Before you start building a data model or report, consider what sort of analysis the
business is trying to achieve. To be successful, you need to understand what
questions the business is trying to answer.

Users who are new to building a data model for reporting and analysis usually
make one or more of the following mistakes:

Importing data into a single flattened table: This may be sourced from
a SQL query that joins several tables together. It's also not uncommon for
systems to export data as a single, de-normalized text file. The
temptation here is to import this file as it is and build your report on top
of the resulting single table data model.
Importing a complete copy of a source database: This often results in
a large number of tables when using the default relationships that were
identified by the import process. Not only can these relationships be
incorrect, but the data in the related tables may be of different
granularity, resulting in inaccurate results in your reports. The data
model can also be difficult to work with due to its size.
Not refining the data model: Once you have imported some data, you
should go through the process of refining your data model, as outlined
earlier.

Ideally, you should aim to keep your data model as simple as possible, with
just the right amount of data to be able to answer questions that are being
asked by the business for a specific purpose. Do not be tempted to try and
build a data model that supports all of the reporting needs of the business. You
will end up with a very large and unwieldy data model that will be difficult to
understand. It will use more memory than necessary and will perform less
efficiently. It will also make the job of writing DAX expressions more



difficult as you will struggle to understand how data flows around the
relationships between tables.



Data modeling concepts in DAX
Before you can design and build a well-structured data model, there are
some key concepts that you need to understand. In this section, we will look
at these concepts in detail. Then, in the next section, we'll put them into
practice when we build a simple data model as a hands-on example.



Fact tables and dimension tables
In its simplest form, a good data model's design will consist of a primary
table (or fact table) containing the numerical figures that you want to
aggregate and analyze. This is then joined to several lookup tables
(dimension tables) that contain the descriptive data relating to the business
entities that you want to use to slice and dice your data.

A fact table, as the name suggests, contains values relating to events or
processes such as sales. It contains numerical data, which can be aggregated
and analyzed to provide measurements, metrics, or other facts about the
business. It is the primary table in a schema and has foreign keys that relate it
to the dimension tables.

A dimension table is a lookup table that contains descriptive data relating to
business entities such as customer, product, or date. It may contain groups
and subgroups and allows you to slice and dice the information you have in
the fact table. The primary key of a dimension table relates to a foreign key in
the fact table.



Star schema and snowflake schema
With a simple data model, the fact table sits at the center and is surrounded by
the dimension tables. This sort of data model is known as a star schema due to
the fact that, when arranged, the tables form a star shape, as shown in Figure
3-2:

 

Figure 3-2: Example of a star schema data model

You may also have dimension tables that are related to other dimension tables
in the form of a hierarchy chain. In this case, you end up with a snowflake
schema, as shown in Figure 3-3:



Figure 3-3: Example of a snowflake schema data model

Where possible, you should look to flatten these chains of dimension tables by
merging them together to form a single dimension table. Once you've done
this, you can create a hierarchy that allows you to step down through the
levels of groups and subgroups in your reports.

You may also have tables in your data model that have a one-to-one
relationship. In these cases, you should also consider flattening the data model
by merging the tables into one. Not only will this reduce the overall size of
your model in memory, but it may also improve performance.



Relationships
Once you have imported some data, the next step is creating the relationships
between the tables. If you have imported data from a database where primary
and foreign keys have already been defined, then these should be imported
along with the tables. However, you may find that these relationships are not
suitable for your data model. You may also have more than one relationship
between tables, where only one will be active. In addition, you may also want
to create new relationships.

A relationship is defined by a single column from each table. You cannot use
multiple columns to define a relationship, but you can create new columns in
each table that consist of multiple columns concatenated together. You can
then use these to create the relationships:



Figure 3-4: Creating relationships between tables in a data model

The screenshot in Figure 3-4 is from a data model in Power BI Desktop. Both
Excel Power Pivot and SSAS Tabular provide similar views of their data
models. In this case, most of the relationships have already been defined.
However, the relationship between the Sales table and the Customer table
still needs to be created. To do this, you can drag the cursor from the



CustomerKey field in the Sale table to the CustomerKey field in the Customer
table.

Alternatively, you can create or maintain relationships through the Manage
Relationships dialog, which can be found under the Modeling tab, as shown in
Figure 3-5:

Figure 3-5: The M anage Relationships button in Power BI Desktop

To create a new relationship using this method, you need to do the following:

1. On the Modeling tab, click Manage Relationships to open the Manage
Relationships dialog, then click on New.

2. In the Create Relationship dialog, in the first table drop-down list, select
the Sales table and then select the CustomerKey column.

3. In the second table drop-down list, select the Customer table and select
the CustomerKey column.

4. From the drop-down list for Cardinality, select Many to one (*:1).
5. From the drop-down list for Cross filter direction, select Single.
6. Ensure the checkbox for Make this relationship active is ticked.
7. Your dialog box should look like the one shown in Figure 3-6. If it does,

click on OK.



8. Click Close on the Manage Relationships dialog:

Figure 3-6: The Create Relationship dialog in Power BI Desktop

This should create an active relationship between the Sales and Customer
tables. The cardinality of the relationship will be one-to-many between the
Customer and Sales tables. This means that a single record in the Customer
table may have many related records in the Sales table.



On the one side of a one-to-many relationship, the table must have a distinct set of
primary key values; otherwise, you will get an error. However, on the one side of a
one-to-many relationship, the table does not need to have matching primary key
values for all of the foreign key values in the table on the many side of the
relationship. A data model does not enforce referential integrity in the way you might
expect if you have experience of working with database models.

If you create a slicer that's connected to a dimension or lookup table and it
contains a (Blank) record at the top, there must be records in the related fact
or data table that have no corresponding record in the lookup table:



Figure 3-7: Slicer with a blank value showing

The screenshot in Figure 3-7 shows an example of this. Here, we have a
product slicer that is referencing the Product table and has (Blank) at the top.



This means that there are records in the related Sales table that are for
products that do not exist in the Product table.

One solution to this is to simply filter out blank records from the slicer.
However, as shown in the preceding example, this would also remove a
significant amount of data from the Sales table, meaning that data would also
be removed from your reports. Where you encounter this situation, you should
review your data model and, if necessary, the source data behind it.



Cardinality
Relationships in your data model can have the following cardinality:

One-to-many (*:1): The column of the table on the one side of the
relationship, which is usually the lookup or dimension table, only has
one instance of a value. This is usually the primary key for that table.
The other related table, which is often a fact table, can have many
instances of the value. This is known as the foreign key.
One-to-One (1:1): The column of the table on one side of the
relationship has only one instance of a value, while the column of the
table on the other side of the relationship also only has one instance of
the value.
Many-to-many (*:*): You can have many-to-many relationships
between tables, removing the need for unique values in tables. It also
removes the need to create bridging tables for the purposes of
establishing relationships. However, there may still be circumstances
where creating bridging tables is the preferred solution.



Cross filter direction
When you create a relationship between two tables in SSAS Tabular and
Power BI Desktop, you have the choice of bidirectional cross filters or
single direction cross filters. With Excel Power Pivot, to maintain backward
compatibility with earlier versions of Excel, you can only have relationships
with single direction cross filters. The arrow on a relationship line, which is
shown in the data model view, shows the direction in which the filter flows.
Let's take a look at the directions that are stated:

Single direction: If you filter records in the table on the one side of a
relationship, the filtering choices are carried through to the table on the
many side of the relationship. However, if you filter records in the table
on the many side of the relationship, these are not carried through to the
table on the one side of the relationship. In Excel Power Pivot, all
relationships will have a single direction.
Both: Unlike single direction cross filters, these filters flow in both
directions. So, if you filter records in the table on either side of the
relationship, they will be carried across to the table on the other side of
the relationship. For filtering purposes, both tables in the relationship
are treated like they are a single table. However, with bidirectional
cross filters, it is possible to create an ambiguous set of relationships,
especially when you have a complex pattern of tables. Because of this,
you should avoid using bidirectional filters where possible.



Hierarchies
A hierarchy is a set of nested columns that are grouped together in a way that
allows you to drill up and down a report visual using a single object from the
field list. A typical example of a hierarchy is usually found in a date table,
where a date hierarchy might consist of the year, month, week, and day fields.
This could then be used with a report visual, where it would allow you to
aggregate data by these values, giving you the ability to drill up and down by
them.

In the following example, we're taking a data model where there are separate
tables for products, product subcategories, and product categories. As it is,
these can be used as they are to create a visual that allows you to drill up and
down on a matrix to show data that's been aggregated by different levels.
However, you need to use three objects from the field list to accomplish this.
The screenshot in Figure 3-8 shows an example of this:



Figure 3-8: A visual using multiple fields to create a drill-down

In the Date table, a hierarchy has been created that includes the Year, Quarter,
Month, and Day fields. Now, we only need to use one object from the field



list to be able to drill up and down the matrix. This can be seen in the
screenshot in Figure 3-9:

Figure 3-9: A visual using a date hierarchy to create a drill-down



In the next section, we'll go through a hands-on example where we'll merge
the Product Category, Product Subcategory, and Product tables into one table
and create a new hierarchy.



Getting data into your data model
Now, let's walk through a hands-on example of building a simple data model.
We'll start by importing data from an Access database. Once the data has
been imported, we'll refine the model by renaming the tables and columns,
hiding unused data, and ensuring that we have created the appropriate
relationships.



Building your first data model
In this example, we'll use Power BI Desktop to walk through the process of
importing data and building a simple data model. In the next chapter, we'll
look at how to import data using Excel Power Pivot and SSAS Tabular.

If you want to follow along with the examples in the rest of this book, you can
download copies of the Access databases and Excel files that are used from: https://gi
thub.com/dataworldtv/Hands-On-Business-Intelligence-with-DAX.
You will also find a Power BI Desktop file there that has the tables already imported,
to help get you started.

We'll start by importing data from an Access database. From the Power BI
Desktop screen, click on Get Data. From the Get Data dialog, select Access
database and click on Connect.

This will open the Open file dialog, as shown in Figure 3-10, and this is
where we can select the Access database to open:

https://github.com/dataworldtv/Hands-On-Business-Intelligence-with-DAX


Figure 3-10: The Open file dialog for getting data

We'll start with the ContosoSales database. Click on Open, which will open
the Navigator dialog. This is where we can select which tables we want to
import. For now, we'll select the DimDate, DimProduct, DimSubcategory, and
FactSales tables, as shown in Figure 3-11:





Figure 3-11: Selecting tables to import from the Navigator dialog

At this point, instead of clicking Load, click Edit, which will take us into the
Power Query Editor. From here, we can choose which fields we want to
load from each table. We can also rename the tables and fields to something
more business-friendly.

On the left-hand side of the screen, we have a list of tables we're going to
import. In the middle section of the screen, we can see the data from the
highlighted table. Finally, on the right-hand side, we have some field
properties. You will also see a list of steps that have been taken to transform
the table, such as renaming columns. We'll follow this as we make changes,
but for now, it should only have two steps for Source and Navigation.

For the next step, we will create a new group so that we can store our Access
tables, and we will rename the table to something more appropriate for
business end users. Remember, when you produce reports, your field names
will be used for labeling, so it's important to have names that make sense to
the business.

When renaming tables and fields, you should follow these simple rules:

Avoid using all capital letters, for example, SALESAMOUNT.
Do not use Pascal casing, for example, SalesAmount.
Do not use Camel casing, for example, salesAmount.
Separate words with a space, for example, Sales Amount.
Remove any prefixes or suffixes, for example, FactSalesAmount.
Avoid using abbreviated names or acronyms, for example, Sales Amt.

To create a group for our tables, we'll right-click in the blank area under the
tables and select New Group from the context menu. We'll name this new
group Access Tables and, once created, move the tables into this group by
right-clicking on each table and selecting Move To Group from the context
menu. Once the tables have been renamed and moved to the new group, the
list of tables should look like the screenshot in Figure 3-12:



Figure 3-12: Tables imported and sorted into group

The next step is to go through each of the tables, remove any fields that are not
needed, and rename those that are required. As you do this, you will notice
that the new steps are added to the list of steps shown in the panel on the
right-hand side, as shown in Figure 3-13:



Figure 3-13: Steps added to data import

If we were to go ahead and import the data at this stage, we would end up
with the data model shown in Figure 3-14:



Figure 3-14: Data model after loading imported data from Access

At this stage, we have a snowflake schema since the product and product
categories have been split over two tables. From both a storage and a
performance point of view, it would be better if we could merge these two
tables into one. To do this, we need to go back to the Power Query editor:

1. In the Power Query editor, select the Product table and click on Merge
Queries, which can be found in the Combine section of the Home ribbon.

2. In the Merge dialog, highlight the ProductSubcategoryKey column for the
Product table. Then, in the lower half of the dialog, select the Product
Subcategory table from the drop-down box.

3. Next, select the ProductSubcategory column for the Product Subcategory
table.



The screenshot in Figure 3-15 shows what the Merge dialog should
look like at this stage:

Figure 3-15: M erging data using the M erge dialog



4. Finally, check that the Join Kind is set to Left Outer and click OK.

Now, you will have a new column in the Product table called Product
Subcategory. At this point, it will be a table type, which is indicated
by the fact that each field contains a table for a value.

5. Click on the double arrow icon next to the field name.
6. A list of fields from the Product Subcategory table will be displayed.

Click the Select All Columns checkbox to deselect the columns and
select the ProductSubcategoryName field. Make sure the Use original
column name as prefix checkbox is not ticked.

The screenshot in Figure 3-16 shows what the merge should look like:



Figure 3-16: Selecting fields to include in the merge

7. Click on OK. This will complete the table merge, adding the Product
Subcategory field to the Product table.

8. We no longer need to load the data from the Product Subcategory table,
so right-click on the Product Subcategory table and uncheck Enable load
from the context menu. You will get a warning about data loss, but you
can click continue to ignore it.

9. Now, click Close and apply to load the data into the data model.



Now, if we look at the data model, we will see that the Product Subcategory
table is no longer included in the model. Product Subcategory has been added
to the Product table as a new column instead.

Now that we have Product Subcategory and Product in the same table, we
can create a hierarchy by performing the following steps:

1. Right-click on the Product table and select Create hierarchy from the
Context menu.

2. In the Properties pane, give the hierarchy a name, and in the advanced
section, add Product Subcategory Name and Product Name, as shown in
Figure 3-17:



Figure 3-17: Creating a hierarchy

3. Click on Apply Level Changes to create the new hierarchy.

The next step in building our data model is to hide the columns that are needed
by the model but should not be shown to the end user. These will include the
various key fields that are required for creating and maintaining relationships
but are not needed for reporting purposes.



You should also hide the Product Name and Product Subcategory Name fields
in the Product table to ensure that end users use the new Products hierarchy
and not these fields when creating reports.

To hide a field, right-click on a field name and select Hide from report view
from the context menu. Hidden fields are grayed out on the data model view.

Finally, we need to link the Date table by creating a new relationship. First,
drag the DateKey field from the Date table to the DateKey field of the Sales
table. This should automatically create a one-to-many relationship between
the two tables.

We could also use this method to connect the Date table to the Product table,
but, as shown in Figure 3-18, these relationships are inactive when they're
created:



Figure 3-18: Inactive relationships between tables

While this is fine, and later in the book we will look how we can use DAX to
work around this, for now we'll make a couple of copies of the Date table and
use these to join the two dates we have in the Product table.

To do this, switch to the report view. From the Modeling ribbon, select New
Table from the Calculations section. Type the following into the DAX editor:

Available Date = 'Date'

Repeat this process to create a second copy of the Date table, but this time,
type in the following DAX expression:



Stop Date = 'Date'

Return to the model view. Here, you will see you have two new date tables.
Create the relationship between the Available Date table and the Product
table by dragging the DateKey field from the Available Date table to the
Available For Sale Date on the Product table.

Repeat this process for the Stop Date table by dragging the DateKey field
from the Stop Date table to the Stop Sale Date on the Product table.

You should now have a simple but well-structured data model like the one
shown in Figure 3-19:

Figure 3-19: Example of a simple data model using multiple date tables



One final step that we can take to make the data model even better is to go
through the tables and ensure that the fields have the correct data type and
formatting. To do this, go to the model view. In the Properties pane, you will
be able to see the various properties for each field. These include the
following:

Data type
Format
Percentage format
Thousands separator
Decimal places
Currency format
Sort by column
Data category
Summarize by
Is nullable

In this hands-on example, we only built a small data model, but in doing so,
we have covered several important data modeling concepts and looked at
some best practices. When building a data model, it is important to consider
the end user. Name tables and columns appropriately using language that the
business understands.

Removing unnecessary columns from your data load and reducing the number
of tables by merging and appending tables not only makes the data model
more usable by the end user, but it also helps to reduce its size. Finally,
making sure that you have defined your relationships correctly is important
when it comes to building reports and ensuring that you get correct results.
These are essential if your DAX expressions and the evaluation contexts are
to work the way you expect.

Having a good data model makes using DAX easier since it makes it easier to
understand how data and filters flow between tables when they are applied.
This, in turn, helps you to understand the effect that the evaluation context has
on data in your model and how this affects the execution of your DAX
expressions.



Extending your data model
The true power of DAX for the BI professional is that it allows you to gain
deeper insights into your data by giving you the ability to expand your data
model. It allows you to create new data and extract new information from the
data that already exists within your data model.

In this section, we're going to look at three different ways in which you can
use DAX to extend your data model. By the end, we'll have added some
examples of each of the following objects to our data model:

Calculated columns
Calculated tables
Measures

Calculated columns are a very quick and easy way to add data to your model,
but they have the disadvantage that they will increase its size and use more
memory. Calculated tables will also add to the size of your data model, but
they are a great way of adding lookup tables that may be missing from the
model's source data. As we will see in the next section, they also offer an
effective way to add custom date tables to your data model.

Measures are a particularly powerful way to gain insights. These range from
a simple sum of a column, through to very complex measures that use values
from across different tables. They are also a great way to expand your data
model without increasing its size, and in many cases, they can be used
instead of calculated columns.



Adding a calculated column
In Chapter 1, What is DAX?, we covered the process of creating a simple
calculated column. So, for this example, we'll create something a little more
complex.

From the Power BI desktop, do the following:

1. Switch to the Data view.
2. In the Fields pane, select the Product table. This will display the contents

of the Product table in the view pane.

3. From the Calculations section of the Home ribbon, select Create New
Column. This will bring up the DAX editor, as shown in Figure 3-20.
Here, you can name the column and add the DAX expression that defines
it:

Figure 3-20: Creating a new calculated column

4. For this example, we're going to use the RELATED function to get the value
of a field from a related table. We'll add a new column that contains the
month and year when a product will be available.



5. Call the new column Available From. Remember that it's okay to use
spaces in column names. In fact, this is the preferred style as it makes the
name more business-friendly for report end users. Type the following
DAX expression into the DAX editor:

Available From =
CONCATENATE (
    RELATED ( 'Available Date'[Quarter] ) & " ",
    RELATED ( 'Available Date'[CalendarYear] )
)

6. This will create a new column called Available From that will contain
the Quarter and Year columns from the related record in the Available
Date table, concatenated, as shown in Figure 3-21:



Figure 3-21: The new Available From column added to Product table

7. As you can see, there are blank values where the related Available For
Sale From date is before January 1, 2005. This is because January 1,
2005 is the first date in the Available Date table. To handle situations
where the date is before or after the dates in the related Available Date
table, change the column definition to the following:

Available From =
SWITCH (
    // the value that the evaluated expression should equate to
    TRUE (),
    // is available for sale date before 01/01/2005?
    'Product'[Available For Sale Date]



        < DATE ( 2005, 01, 01 ), "Before Q1 2005",
    // is available for sale date after 31/12/2011?
    'Product'[Available For Sale Date]
        > DATE ( 2011, 12, 31 ), "After Q4 2011",
    // if we get here, available for sale date is in range
    CONCATENATE (
        RELATED ( 'Available Date'[Quarter] ) & " ",
        RELATED ( 'Available Date'[CalendarYear] )
    )
)

This final expression uses the SWITCH function to step through a number of
options. We could also use nested IF statements, but the SWITCH function is
clearer to read.

While calculated columns are a relatively easy way to expand your data
model, you must remember that they are stored in memory with the rest of your
data model. Each calculated column will take up space in memory, which can
have a significant impact, especially when adding calculated columns to large
tables.



Adding a calculated table
Calculated tables allow you to extend your data model by adding new tables.
They are created by a DAX expression, which also creates the table's values.
In this section, we will walk through a couple of examples of creating
calculated tables to store intermediate results. Unfortunately, calculated tables
are not available in Excel Power Pivot.

Let's go over what calculated tables can do and what they have:

They have the ability to store intermediate results for querying.
They have relationships with other tables, just like imported tables.
They contain columns that have a definable data type and format.
They can be used in report visualization, such as imported tables.
They are recalculated when the base table's data is updated or refreshed.
They are in-memory tables that use RAM.

To create a calculated table through Power BI Desktop, follow these steps:

1. Switch to the Report or Data view.
2. From the Calculations section of the Modeling ribbon, select Create

New Table. This will bring up the DAX editor, as shown in Figure 3-22.
Here, you can name the table and add the DAX expression that defines it:

Figure 3-22: Adding a calculated table using the DAX editor



3. In this first example, we're going to create a table that contains a list of
manufacturers that have been extracted from the Product table. To do
this, enter the following DAX expression:

Manufacturer =
DISTINCT ( 'Product'[Manufacturer] )

4. Now, we have a new table called Manufacturer that acts like a normal
table. It can be used in relationships and reporting visualization. The
screenshot in Figure 3-23 shows that the table can be related to the
Product table:

Figure 3-23: Creating a relationship with a calculated table

5. In the following example, we're going to create a slightly more complex
version of this table that includes the total sales for each manufacturer.
To achieve this, we'll use the SUMMARIZE function. Type in the following
DAX expression to create the new table:

Manufacturer Sales =
SUMMARIZE (
    Sales,
    'Product'[Manufacturer],
    "Total Sales",



    SUM ( 'Sales'[Sales Amount] )
)

6. Finally, we're going to create a table that contains the top 10 products,
based on the quantity of products that have been sold in the Sales table.
To do this, we will create a table called Product Sales. This is very
similar to the table we created in step 5. The DAX expression to use for
this is as follows:

Product Sales =
SUMMARIZE (
    Sales,
    'Product'[ProductKey],
    "Total Sales",
    SUM ( 'Sales'[Sales Quantity] )
)

7. Then, we will use the DAX TOPN function to create a table that contains
the top 10 products. The DAX expression for this is as follows:

Top 10 Products =
TOPN (
    10,
    'Product Sales',
    'Product Sales'[Total Sales],
    DESC
)

8. To complete our expanded data model, we need to create relationships
between these new tables and the Product table. Once completed, the
expanded data model should look like the one shown in Figure 3-24:



Figure 3-24: The expanded data model with calculated tables

Other DAX functions that can be useful when creating calculated tables
include CROSSJOIN, UNION, NATURALINNERJOIN, NATURALLEFTOUTERJOIN, INTERSECT, CALENDAR,
and CALENDARAUTO.

We will be looking at some examples of using the CALENDAR and CALENDARAUTO
functions in the next section, where we will create a custom date table.



Calculated tables can also be expanded by the addition of calculated columns,
just like imported tables. However, just like calculated columns, calculated
tables are stored in memory, so you will need to keep the table size in mind to
ensure optimal performance.



Adding a measure
As we saw in Chapter 1, What is DAX?, measures are a way of creating
aggregations of data using a DAX expression. A measure always involves
some form of aggregation, such as calculating the sum of a numeric column,
for example, the sales amount. Measures invariably involve more complex
DAX expressions than a calculated column or calculated table. You also need
to take the evaluation context into account.

Before we start creating any measures, we will create a measures table to
store them. Again, this is something we can do in Power BI Desktop, but not
Excel Power Pivot. We'll look at creating measures in Power Pivot and SSAS
Tabular in the next chapter.

From the Power BI Desktop, do the following:

1. Switch to the Report or Data view.
2. From the External data section of the Home ribbon, select Enter Data.

This will bring up the Create Table editor, as shown in Figure 3-25.
Leave everything as is but rename the table from Table1 to Key
Measures:



Figure 3-25: The Create Table dialog in Power BI Desktop

3. Click Load. A new table called Key Measures will be created with just
one empty field called Column1. For now, do not delete this field or
Power BI will think the table is redundant and automatically delete it.

4. Once you have created a measure in the table, you can delete Column1.
The next time you open the Power BI file, the table will have been
converted into a special measure table.

Having created our Key Measures table, we can add a few example measures
to our data model.

From the Power BI Desktop, we will do the following:

1. Switch to the Report or Data view.



2. Right-click on the Key Measures table on the Fields pane and select
New measure. This will bring up the DAX editor, where you can name
the measure and add the DAX expression that defines it.

3. For our first measure, we will keep things simple by creating a measure
that calculates the sum of the Sales Amount column in the Sales table. To
do this, use the following DAX expression:

Sum Of Sales Amount = SUM ( Sales[Sales Amount] )

4. Once created, this new measure can be used in report visuals, where it
will work within the evaluation contexts created by other columns that
are used within the visual. In Figure 3-26, the new measure has been
added to a table to show the sum of sales by product subcategory. It also
includes the Sales Amount field that this measure is built upon. You will
see that it gives the same result. While we have created the measure
explicitly by including the Sales Amount field in this table, DAX is
creating the same measure implicitly to give the desired result:



Figure 3-26: Adding a measure to a report visual in Power BI Desktop

5. For the following example, we will create a measure that is a little more
complex. For this measure, we will use one of the DAX AggregateX
functions. These functions are much like the normal versions of their
equivalent function. However, instead of just working on the values in a
single column, they iterate through the rows for the current filter context
and apply a DAX expression, before carrying out the operation of the
function.

6. Let's illustrate this. Once again, from the Key Measures table, create a
new measure. In the DAX editor, enter the following DAX expression:

Sum Of Sales Less Returns =
SUMX (
    Sales,
    Sales[Sales Quantity] - Sales[Return Quantity]
)



7. In this example, we have created a measure that iterates through the rows
in the Sales table for the current filter context. For each row, it calculates
the sales quantity minus the return quantity, almost as if we had added
this as a calculated column. Then, it calculates the sum of all of these
resulting values, much like the SUM function would, had this been a
calculated column.

8. For the final example of a measure, we will add a ratio to our data
model to give us a percentage of returns over sales. Again, from the Key
Measures table, create a new measure. In the DAX editor, enter the
following DAX expression:

% Returns Over Sales =
DIVIDE (
    SUM ( Sales[Return Quantity] ),
    SUM ( Sales[Sales Quantity] )
)

9. Since we are dealing with a percentage here, we can finish off the
measure by making sure it has the correct data type of Percentage and
that it is formatted to have one decimal place displayed. We can do this
from the Formatting section of the Modeling ribbon, as shown in Figure
3-27:

Figure 3-27: Formatting a measure from the modeling ribbon in Power BI Desktop

As we have seen, measures allow you to extend your data model without
increasing memory usage. In many cases, a measure can be used in place of a
calculated column. In fact, wherever possible, you would be wise to use
measures over calculated columns. Although measures can have an impact on
the performance of your report, the advantages of reducing the size of your
data model outweigh the disadvantages.



The downside to using measures is that the DAX required to produce them
can be quite complex. In addition, you need to be aware of the evaluation
context. However, measures are perhaps the most powerful way DAX can
extend your data model and give you deeper insights into your data.



It's a date
In this section, we will look at how you can use DAX, with the create table
function, to create a custom date table.

In our data model, we already have some date tables. However, as we have
seen, there are no dates prior to December 1, 2011. In the Product table, we
have products that have values in the Available For Sale Date field that are
before this date. To get around this issue, we are going to create a custom date
table that covers all of the dates referenced in the Product table.

To start, we will need to create a calculated table. From Power BI Desktop,
follow these steps:

1. Switch to the Report or Data view.
2. From the Calculations section of the Modeling ribbon, select Create

New Table. This will bring up the DAX editor, where we can name the
table and add the DAX expression to define it. In the DAX editor, enter
the following expression to create the new base date table:

Available Date New =
CALENDAR (
    FIRSTDATE ( 'Product'[Available For Sale Date] ),
    LASTDATE ( 'Product'[Available For Sale Date] )
)

3. This will create a basic date table with a single column called Date.
Check that this column is correctly formatted as a date and rename it to
DateKey.

4. Next, mark the new table as a date table. To do this, right-click on the
new date table in the Fields pane and select Mark as date table. This
will bring up the dialog shown in Figure 3-28. Change the Date column
to DateKey and click OK:



Figure 3-28: M arking a table as a date table in Power BI Desktop

5. Now, we will replicate the columns from the original Available Date
table using DAX expressions. We'll start by adding the CalendarYear
column. Create a new column and enter the following DAX expression:

CalendarYear =
YEAR ( [DateKey] )

6. Next, create the CalendarQuarter column using the following DAX
expression:

CalendarQuarter =
INT ( YEAR ( [DateKey] ) &
    IF ( MONTH ( [DateKey] ) < 4, 1,
        IF ( MONTH ( [DateKey] ) < 7, 2,
            IF ( MONTH ( [DateKey] ) < 10, 3,
                4
                )
            )
        )
)



7. Create the CalendarMonth column using the following DAX expression:

CalendarMonth =
INT ( YEAR( [DateKey] ) & FORMAT( MONTH ( [DateKey] ), "00" ) )

8. Create the CalendarWeek column using the following DAX expression:

CalendarWeek =
INT ( YEAR( [DateKey] ) & FORMAT( WEEKNUM( [DateKey] ), "00" ) )

9. Create the CalendarDayOfWeek column using the following DAX
expression:

CalendarDayOfWeek =
INT ( YEAR( [DateKey] ) & FORMAT( WEEKNUM( [DateKey] ), "00" ) & WEEKDAY( 
[DateKey] ) )

10. Create the Year column using the following DAX expression:

Year =
"Year " & [CalendarYear]

11. Create the Quarter column using the following DAX expression:

Quarter =
IF( MONTH ( [DateKey] ) < 4, "Q1",
    IF( MONTH ( [DateKey] ) < 7, "Q2",
        IF( MONTH ( [CalendarMonth] ) < 10, "Q3",
            "Q4"
        )
    )
)

12. Create the Month column using the following DAX expression:

Month =
FORMAT ( [DateKey], "MMMM" )

13. Create the Week column using the following DAX expression:

Week =
"Week " & WEEKNUM( [DateKey] )

14. Finally, create the Day Of Week column using the following DAX
expression:



Day Of Week =
FORMAT ( [DateKey], "DDDD" )

Now that we have created our custom date table to replace the original
Available Date table, all we need to do is delete the original table, rename
our new table to Available Date, and recreate the relationship with the
Product table.

You will also need to amend the DAX code for the calculated
column, Available From, in the Product table so that it no longer checks for
out of range dates. To do this, use the following DAX expression:

Available From =
CONCATENATE (
    RELATED ( 'Available Date'[Quarter] ) & " ",
    RELATED ( 'Available Date'[CalendarYear] )
)

In addition to the CALENDATE function, there is another DAX function called
CALENDARAUTO. This function looks through your data model and creates a date
table that covers all of the years referenced in the model.

Internally, the CALENDARAUTO function uses the CALENDAR function and provides a
date range that includes the earliest date in the model that is not in a
calculated column and the latest date in the model that is not in a calculated
column.

The CALENDARAUTO function can also take a parameter that is an integer from 1 to
12, which represents the end month of the fiscal year. The date range that's
returned includes all dates between the beginning of the fiscal year for the
start date and the end of the fiscal year for the end date.

One thing to note when using the CALENDARAUTO function over the CALENDAR function
is that it scans all of the dates in a data model to establish the start and end
dates. There is a risk with this approach that it will use dates that don't need
to be included and you end up with a table that covers a much wider range
than necessary.



Summary
In this chapter, you learned about why it is important to build a well-defined
data model. Not only does it make it easier to understand and report from as
an end user, but it also makes it easier to work with as a BI professional by
making the execution of DAX code easier to understand. From here, you
learned about a couple of different schema designs with the star and
snowflake shaped schemas. You also learned about some important data
modeling concepts that you then put into practice by building a simple data
model using hands-on examples.

Then, you looked at how to load data and create relationships and how to use
DAX functions to extend your data model by creating calculated columns,
calculated tables, and measures. Finally, you learned how to extend your data
model further by adding a custom date table to it using the CALENDAR function.

In the next chapter, we'll build on this knowledge by looking at how to import
data and create data models using Excel Power Pivot and SSAS Tabular.



Working with DAX in Power BI,
Excel, and SSAS
In this chapter, we will look at the three different platforms that support DAX
– Power BI Desktop, Excel Power Pivot, and SQL Server Analysis
Services (SSAS) Tabular. By the end of this chapter, you will be familiar
with using the DAX formula editor in Power BI Desktop. You will also have
learned how to load data into an Excel Power Pivot data model and expand it
using DAX formulas. Finally, you will learn how to use DAX with SSAS
Tabular, import the data model from Excel Power Pivot, and use DAX to
query the data in SSAS.

The chapter is broken down into the following sections:

Working with DAX in Power BI Desktop
Working with DAX in Excel Power Pivot
Working with DAX in SSAS Tabular



Working with DAX in Power BI
Desktop
In the previous chapter, we created a data model using Power BI Desktop.
As part of that, we used DAX to add tables, columns, and measures to our
data model. 

With Power BI Desktop, you enter DAX code using the DAX formula editor.
In this chapter, we will look at the DAX formula editor in more detail. We'll
look at how you can speed up the process of entering code using some of the
shortcut keys that are available in the editor. We'll then look at how the built-
in IntelliSense helps to reduce errors when entering code. We'll also look at
how to use the editor so that your code is indented correctly, helping to
maintain an easy-to-read layout.



The DAX formula editor
Figure 4-1 shows the DAX formula editor being used to enter some DAX
code in Power BI Desktop:

Figure 4-1: Entering DAX code in the formula editor in Power BI Desktop

By default, when you start to enter your DAX code, the editor will resize as
you type in text. If you want to expand the editor screen to make use of the
whole screen's height, click on the down arrow on the right-hand side of the
editor. Likewise, you can shrink the editor screen back down again by
clicking on the up arrow.

You can alter the size of the font by holding down the Ctrl key and either
rolling the scroll wheel on your mouse or by pressing the plus and minus keys.

In addition to these shortcut keys, there are other shortcut key combinations
that you can use, and these are given in the following table:



Shortcut Result Key Combination

Column selection page down Ctrl + Shift + Alt + PgDn

Column selection page up Ctrl + Shift + Alt + PgUp

Comment lines Ctrl + KC

Copy line Ctrl + C

Copy line down Shift + Alt + Down Arrow

Copy line up Shift + Alt + Up Arrow

Cut line Ctrl + X

Delete a word Ctrl + Delete

Delete line Ctrl + Shift + K

Find and replace a word Ctrl + D

Go to beginning of file Ctrl + Home

Go to beginning of line Home

Go to end of file Ctrl + End

Go to end of line End

Go to selected line number Ctrl + G

Indent line left Ctrl + [

Indent line right Ctrl + ]

Insert cursor Alt + Click

Insert cursor above Ctrl + Alt + Up Arrow

Insert cursor below Ctrl + Alt + Down Arrow

Insert new line above Ctrl + Shift + Enter

Insert new line below Ctrl + Enter



Jump to matching bracket Ctrl + Shift + \

Move the line down Alt + Down Arrow

Move the line up Alt + Up Arrow

New line above Ctrl + Shift + Enter

New line with indent Shift + Enter

New line without indentation Alt + Enter

Redo DAX code Ctrl + Y

Scroll line down Ctrl + Down Arrow

Scroll line up Ctrl + Up Arrow

Scroll page down Alt + PgDn

Scroll page up Alt + PgUp

Select all occurrences of current selection Ctrl + Shift + L

Select all occurrences of current word Ctrl + F2

Select current line Ctrl + I

Toggle the  'Tab moves focus' feature Ctrl + M

Uncomment lines Ctrl + KU

Undo DAX code Ctrl + Z

Undo last cursor operation Ctrl + U

 

It is important to remember to use the combination of Shift + Enter or Alt +
Enter when you want to move to a new line. If you just hit the Enter key, then
the editor will think you have finished entering your DAX expression. Unless
you have finished, this will invariably result in an error.



Using the Alt and Enter key combination will give you an indented new line, which
will help you to follow the formatting rules we looked at in Chapter 2, Using DAX
Variables and Formatting.

The DAX formula editor is IntelliSense enabled. This means that it will give
you information about the DAX function you are typing in, along with some
suggestions for the parameter values. Figure 4-2 shows an example of
IntelliSense in action:

Figure 4-2: IntelliSense in action in the DAX formula editor

The following are some additional points on using the DAX formula editor in
Power BI Desktop:

The IntelliSense feature helps you to create syntactically correct DAX
expressions by giving you a list of suggestions on what to type next, as
you type in your expression.
If you are partway through entering some DAX and decide to cancel
what you're entering, click on the X in the top left-hand corner to close



the editor and discard its content.
If you have finished entering the DAX code, click on the tick symbol to
save your work and close the editor.
Clicking on any bracket within your DAX code brings up another helpful
feature. The editor will automatically highlight the opposing start or end
bracket, which is especially helpful if you are using nested expressions.

Along with the work that we did on creating and expanding our data model in
Chapter 3, Building Data Models, this concludes our look at using DAX with
Power BI Desktop. In the next section, we will look at a similar exercise
using the Excel Power Pivot add-in to import data and create a data model.



Working with DAX in Excel Power
Pivot
Power Pivot is an add-in for Excel that originally became available with
Excel 2010. It essentially gives you SQL Server Analysis Services running
directly within your copy of Excel. What this allows you to do is create an
in-memory data model using data imported from external sources as well as
from worksheets within the Excel file itself.

Just like the data model we created in Chapter 3, Building Data Models, it is a
collection of tables and relationships that can be expanded using DAX to
create new columns and measures. However, unlike Power BI Desktop, you
cannot use DAX to create new tables in Excel.



Installing and enabling the Power
Pivot add-in
While Power Pivot is included as an integral part of certain versions of Excel 2013
and beyond, Excel 2010 requires a separate component to be downloaded and
installed.

The following link provides further details of what versions of Office include Power Pivot
and where to find the download for Excel 2010: https://support.office.com/en-us/article/where-is-power
-pivot-aa64e217-4b6e-410b-8337-20b87e1c2a4b.

If you have a version of Excel that includes the Power Pivot add-in, you may also
need to enable it. To do this, follow these steps:

1. Go to File, click on Options, and then click on Add-Ins.
2. In the Manage dialog, select COM Add-ins from the drop-down list, and then

click on Go.

3. This will bring up the COM Add-Ins dialog shown in Figure 4-3:

Figure 4-3: The COM  Add-ins dialog in Excel

https://support.office.com/en-us/article/where-is-power-pivot-aa64e217-4b6e-410b-8337-20b87e1c2a4b


4. Check the Microsoft Power Pivot for Excel box (some versions will have a
slightly different name) and click on OK.

5. With Power Pivot enabled, you will have a new tab available that will give
you the Power Pivot ribbon, as shown in Figure 4-4:

Figure 4-4: The Power Pivot ribbon in Excel

The Power Pivot ribbon contains some options required to start building your data
model. The most important of these is the Manage icon in the Data Model section.
This opens the Power Pivot window where you load and prepare data, or work on
the data already imported into your data model. We will look at this and a couple of
the other icons in more detail as we go through the process of building our data
model.



Adding data to an Excel data model
When dealing with data sources for an Excel data model, they can either be
external or they can be Excel tables from the current workbook.

Much like we did when building a data model with Power BI Desktop in Chapt
er 3, Building Data Models, we'll start by importing some data from an
Access database. Once we have done this and made sure the relationships
between tables are correct, we'll add data from a table to the current
workbook:

1. To start, click on the Manage icon in the Data Model section of the
Power Pivot ribbon. This will open the Power Pivot window, as shown
in Figure 4-5:

Figure 4-5: The Excel Power Pivot window

2. Next, we'll import data from an Access database. From the Power
Pivot window, click on From Database in the Get External Data section
of the Home ribbon, and then select From Access from the drop-down
menu, as shown in Figure 4-6:



Figure 4.6: Getting data from an Access database

This will open the first screen of the Table Import Wizard, as shown
in Figure 4-7. From here, we can add the path to the Access database
file and, if necessary, enter details of the username and password
required to connect to the database. In this example, we only need to
give the file path:



Figure 4-7: Entering details of the Access database with the table import wizard



3. Click on Browse to open the Open file dialog, as shown in Figure 4-8,
from where we can select the Access database to open:

Figure 4-8: Selecting the Access database with the file explorer dialog

In this exercise, we're going to import some data from the
ContosoSales Access database.

4. Select that file and click on Open. This will open a new dialog, as
shown in Figure 4-9, asking us whether we want to select data from a
list or import data based on the results of a query:



Figure 4-9: Selecting the method to use to import data from an Access database

For now, we'll go with the option to select from a list of tables.

5. Click on Next to open the Select Tables and View dialog, as shown
Figure 4-10. Here, we can select which tables we want to add to our
data model. Using this dialog, we can also give them more business user-
friendly names.



6. Click on Finish to start the data import process:

Figure 4-10: Selecting the tables and views to import from an Access database

Our data model will now be created and data from the selected
Access database tables will be imported. Progress will be displayed
on the Import dialog, as shown in the following screenshot.



7. If there are any errors, click on the Details link in the appropriate
message column; as shown in Figure 4-11, otherwise click on Close
when the import has completed:

Figure 4-11: Clicking on the details link will show more information

You will now be returned to the Power Pivot window where you will have a
tab for each of the tables you've just imported. Each table will look much like



a worksheet. However, a Power Pivot table can contain far more rows of data
than a worksheet. The screen is split into two sections, with the top being the
Data View and the bottom section being the Calculation Area. This is where
you can create measures using DAX.

The screenshot in Figure 4-12 shows the Power Pivot window with tabs for
each of the tables we chose to import from the Access database:



Figure 4-12: The Power Pivot window with tabs added for each table



If you want to rename or delete a column from your data model, right-click on
a column heading and select the appropriate option from the drop-down menu,
as shown in Figure 4-13:

Figure 4-13: The column heading context menu where you can rename or delete a column from the data model

For now, close the Power Pivot window and return to the worksheet. This
worksheet contains an Excel table called Stores, which contains a list of store
names. To add this table to our data model, select a cell in the table and click



on the Add to Data Model icon in the Tables section of the Power Pivot
ribbon, as shown in Figure 4-14:

Figure 4-14: Adding a worksheet table to an Excel data model

This will reopen the Power Pivot window and you will see the Excel table
has been imported and a new tab added, as shown in Figure 4-15:



Figure 4-15: Power Pivot window showing imported Excel table

When we imported the tables from the Access database, they were imported
with the existing relationships that were already defined there. However, as
there are no relationships defined with the Excel table, we will need to
manually add a relationship. To do this, switch from the Data View to the



Diagram View, on the View section of the Home ribbon. Figure 4-16 shows
the Stores table without a relationship to any other tables:

Figure 4-16: The imported table without a relationship

To create a relationship, drag a line between the StoreKey in the Sales table
to the StoreKey in the Stores table. This will create a relationship between the
two tables, as shown in Figure 4-17:



Figure 4-17: The imported table with the relationship created

We are now in a position to start expanding our data model using DAX. We'll
start by creating a new measure. For now, close the Power Pivot window and
return to the worksheet.



Extending an Excel data model
On the Power Pivot ribbon, do the following:

1. Click on Measures in the Calculations section.
2. Select New Measure from the drop-down menu. This will open the

Measure dialog shown in Figure 4-18.

Here, we can, do the following:

Create a new measure, defining the table it will be stored with, its name,
and of course the DAX code used to define it.
We can also specify the category and format:



Figure 4-18: The M easure dialog in Excel Power Pivot

We can define measures in the calculation area of a table in the Power
Pivot window.

The screenshot in Figure 4-19 shows the measure we created for the Stores
table. In the calculation area, we can see the value that was returned for the
measure, while the DAX used to define it is shown in the DAX formula
editor:



Figure 4-19: Showing a measure in the calculation area with the DAX for it shown in the formula editor

Now, let's define a new measure in the Sales table:

1. Switch to the Sales tab and then select any cell in the calculation area.
2. Enter the following code into the DAX formula editor:



Sum of Sales Amount := SUM ( Sales[SalesAmount] )

The result of the new DAX measure will be displayed in the calculation area,
as shown in Figure 4-20:

Figure 4-20: The result of the sum of sales amount measure shown in the calculation area

We can extend the data model further by using DAX to define calculated
columns for a table. To add a new column, do the following:

1. Click on the column heading of the end column, where it says Add
Column.

2. Then, in the DAX formula editor, enter the DAX that will define the new
column.

3. In our data model, in the Sales table, add a new column using the
following DAX code:

Sales Less Returns :=
    Sales[SalesAmount] -
    Sales[ReturnAmount]

The screenshot in Figure 4-21 shows the Sales table with the new calculated
column added and the values calculated for the new column. Remember, as
with Power BI Desktop, calculated columns will add to the overall memory
footprint of your data model, so they should be used sparingly:



Figure 4-21: Adding the sales less returns calculated column to the sales table

That concludes our look at building a data model with Excel. However, in the
next section, we will look at how this data model can be used as the basis of
building a data model using SSAS Tabular.



Working with DAX in SSAS
Tabular
Microsoft added the tabular model to SQL Server Analysis Services with the
release of SQL Server 2012. As with Power BI Desktop and Excel Power
Pivot, it is an in-memory database that utilizes compression algorithms to
store large amounts in memory instead of storing it on disk. This means that,
unlike the multidimensional version of SSAS, the tabular model does not
require aggregations to be pre-calculated and stored to offer fast,
summarized data.

So far, we've looked at how to import data and build data models using
Power BI Desktop and Excel Power Pivot. In each case, the data is imported
and stored in the host file. While this is fine for limited use, it does make it
difficult to share and reuse the data model. With Power BI Desktop, it is at
least possible to publish the data model to the Power BI online service. For
Excel Power Pivot, you could copy and share an Excel file. However, in
addition to obvious security risks involved with this, it also makes it difficult
to keep changes to the data model in sync as it will end up residing on
multiple copies of the original file.

To get around this issue, it is possible to import an Excel Power Pivot model
into a SQL Server Data Tools (SSDT) project and then deploy it to an
instance of SSAS Tabular. Once we have created the project, it is possible to
make changes to the data model, including adding additional calculated
columns and measures. In fact, it is also possible to create a data model from
scratch using SSDT, much like we did when we built the model using Excel
Power Pivot.

The important point with deploying a data model to an instance of SSAS
Tabular is that, once deployed, it can be used by multiple users in multiple
files. Whenever an updated model is deployed, the changes will be
propagated whenever the data is refreshed in the destination file.



Importing the Excel Power Pivot
data model into the SSDT project
SQL Server Data Tools is a development environment built on top of
Microsoft Visual Studio. In addition to being used to create SQL Server
databases, it can be used to create and maintain an SSAS Tabular data model.
As part of this, it is possible to import an existing Excel Power Pivot
workbook.

For this exercise, we'll be using SSDT with Visual Studio 2019. The steps
we'll follow will be very similar to when we used SSDT with previous
versions of Visual Studio. We will be deploying the resulting data model to an
instance of SSAS running on a copy of SQL Server 2017.

In addition to installing a version of Visual Studio 2019, you will also need to install
the Visual Studio extension for Microsoft Analysis Services Projects, before you can
follow along with this example. For more information, see the Microsoft
documentation for SSDT at:
https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt

We'll start by creating a new project:

1. Open Visual Studio and select File > New > Project from the menu.
2. This will open a dialog for Create a new project, as shown in Figure 4-

22.
3. This screen will look somewhat different on earlier versions of Visual

Studio. However, whatever version it is, select the option to Import from
PowerPivot:

https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt




Figure 4-22: Creating a new Excel Power Pivot import project in Visual Studio

4. Next, give the new project a name, as shown in Figure 4-23. For this
project, we'll call it ContosoSales Tabular.

5. Click on Create to create the project files:



Figure 4-23: Configuring a new project to import data from Excel Power Pivot

6. The next screen, shown in Figure 4-24, will ask whether you want to use
an Integrated workspace or a Workspace server. If you use an integrated



workspace, then you do not need an instance of SSAS at this stage.
However, you will still need an instance of SSAS to deploy your data
model to when it is built. For this exercise, I have a local instance of
SSAS running on my machine, so I will use localhost for my workspace,
as shown in the following screenshot:

Figure 4-24: Choosing whether to use an integrated workspace or a workspace server



7. We now need to point to the Excel Power Pivot workbook we want to
import into our SSDT project. At this point, we'll point to the Excel file
we created in the previous exercise. Click on Open, as shown in Figure
4-25, to start the import process:

Figure 4-25: Selecting the Excel Power Pivot workbook to use for the data import

SSDT will now start the process of importing the data model from the Excel
Power Pivot file. When it completes, you will be left with a screen that looks



very much like the Power Pivot window that we were working with in the
previous Excel exercise.

We will start off with the data view, with tabs for each of the tables imported
from the data model. As with Power Pivot in Excel, it is here that you can add
calculated columns to tables, and create measures, using DAX entered with
the DAX formula editor. Figure 4-26 shows this screen, along with the
column and measure we created:

Figure 4-26: The data view in SSDT



You can also switch to the model view, which again looks very much like the
model view you get with the Excel Power Pivot window. Figure 4-27 shows
the data model as it was imported from the Excel file. From here, you can
manage relationships and create hierarchies. You can also delete, hide, and
rename objects in the model:

Figure 4-27: The Excel Power Pivot data model after being imported



With the Power Pivot data model successfully imported, and any additions or
amendments completed, we are ready to make it available to a wider
audience. To do this, we need to deploy it to an instance of SSAS Tabular.



Deploying your data model to an
instance of SSAS Tabular
Before we deploy our data model to SSAS, we need to check the project's
properties to ensure it is configured to the correct instance of SSAS.

In the Solution Explorer window, do the following:

1. Right-click on the project name, ContosoSales Tabular, and click on
Properties from the context menu.

This will bring up the properties for the project, as shown in Figure
4-28. Ensure you are happy with the server and the database name. In
this example, it is pointing to an instance of SSAS Tabular running on
a local machine. However, in reality, this should be a server that is
accessible to the business intelligence users:



Figure 4-28: The properties dialog for the SSDT Excel Power Pivot project

2. Click on OK and, once again, right-click on the project name. This time,
select Deploy from the context menu, as shown in the Figure 4-29:



Figure 4-29: Deploying a data model from the context menu

The deployment of the data model will now begin and you will see a window
showing the progress of the deployment. Figure 4-30 shows this window for



the completed deployment, giving the final status of each table and the number
of rows transferred:

Figure 4-30: Final status of tables after deployment of the data model completes

With the data model deployed, we now need to move from using SSDT to
SQL Server Management Studio (SSMS). If you want to make further
changes to the data model, then you will need to return to SSDT and make the
changes there before redeploying.



Working with the tabular database
in SSMS
Now that our data model has been deployed to a tabular database in SSAS,
we can use SSMS to carry out some basic management tasks, albeit in a
limited way. We can also use it to query data in the database using the browse
option, or by using DAX expressions.

The screenshot in Figure 4-31 shows the Object Explorer, where we can see
the database where our data model has been deployed. There is also a second
database, with the same name plus a long suffix, which is the workspace
database. If you used an integrated workspace for your project in SSDT, then
you will not see this second database:



Figure 4-31: The Object Explorer in SSM S showing deployed tables

Looking at the database, there are three nodes:

Connections: This contains the connections to the data sources. Under
the properties for each connection, you can modify the connection string
along with a few other property settings. You cannot add or delete
connections in SSMS. This must be done in SSDT, with the data model
then being redeployed to SSAS.
Tables: This contains a list of the tables in the database. You can right-
click on a table to view the table's properties, which are view-only and
cannot be amended.
Roles: From here, you can assign permissions to users accessing the
database. When users are assigned to a role, they are granted the



permissions that have been granted to that role. You can add, delete, and
configure roles, and add and remove users from a role.

You can create row filters on a role. This specifies which rows in a table can
be queried by members of that role. These filters are created using DAX
formulas that will evaluate to true or false to determine what a user can
access.

Unlike with a relational database, you are limited with what you can do with
objects using Object Explorer. Instead, you need to right-click on the database
name in Object Explorer and click on Browse. This will open a window, as
shown in Figure 4-32, where you can browse the objects and their related
data:



Figure 4-32: Opening a window to browse objects and related data

To view some data, drag columns or measures from the list on the left-hand
pane to the bottom pane on the right. Here, we've dragged across the



ChannelName column from the Channel table, and the Sum Sales Less Returns
measure.

If you want to limit the data being returned, then you can do so by defining
filters in the top pane.

If you want to do some analysis on your data in a more familiar environment,
you can click on the Analyze in Excel icon on the top toolbar. Clicking on this
icon opens a new Excel file, with a connection through to the data model
already configured and a pivot table ready to use. Figure 4-33 shows an
Excel workbook ready to start work on some tabular data:

Figure 4-33: Starting work with tabular data in an Excel worksheet

The other way to query data in the tabular database is through a query window
using DAX. To open a new query window, right-click on the database name in
Object Explorer and select New Query.



Querying SSAS Tabular data using
DAX
Unlike the DAX expressions we've used so far, DAX expressions in SSAS
Tabular always begin with the EVALUATE keyword. This keyword is followed by
a DAX expression that returns a table. This table expression defines the
query, much like SQL expression does in a relational SQL database, with the
EVALUATE keyword acting like the SELECT statement.

The simplest DAX expression is the EVALUATE keyword followed by the name of
a table. This will act like SELECT *, returning all columns of all rows in a table.

Again, similar to SQL, you can specify an additional ORDER BY clause to the
DAX expression to set the order of the returned rows.

The following expression will return all columns and rows from the Channel
table, sorted in ascending order of the values in the ChannelName column:

EVALUATE
    'Channel'
ORDER BY
    'Channel'[ChannelName]

If you want to specify more than one column after the ORDER BY clause, then you
can, but they must be separated by commas.

The result of running this DAX expression can be seen in Figure 4-34:



Figure 4-34: Querying data in a table using DAX

At the moment, we are retrieving all of the rows in a table. That's fine for a
small table such as the Channel table, but for something larger, we will
probably want to limit the number of rows being returned. To do this, we need
to use the FILTER function.

The FILTER function takes two parameters. The first is a table expression and
the second is a Boolean expression. The Boolean expression is evaluated
against each row returned by the table expression, and rows that result in true
are returned in the function's result set.

The following is an example that would return the rows in the Sales table,
where the number of returns is greater than 3:

EVALUATE
FILTER (



    'Sales',
    'Sales'[ReturnQuantity] > 3
)
ORDER BY 'Sales'[SalesKey]

While this example will limit the number of rows being returned, it is still
returning all of the columns in the Sales table.

To limit the number of columns, we need to turn to the SUMMARIZE function. This
function is designed for grouping rows together and summarizing but, because
it returns a table, it can be utilized to limit the columns. However, to do this,
we do need to provide a column or group of columns that uniquely identify
each row, to ensure each row is returned.

The first parameter of the SUMMARIZE function is the table that you want to return
data from. The subsequent parameters are the columns that we want to include
in our query, including the columns that uniquely identify each row.

The following example will return six columns from the Sales table, including
the SalesKey column, which acts as the unique row identifier:

EVALUATE
 SUMMARIZE (
     'Sales',
     'Sales'[SalesKey],
     'Sales'[DateKey],
     'Sales'[ProductKey],
     'Sales'[SalesAmount],
     'Sales'[ReturnQuantity],
     'Sales'[ReturnAmount]
 )
 ORDER BY Sales[SalesKey]

In the following example, we will combine these two examples to give us a
filtered list, but only include the columns we need:

EVALUATE
SUMMARIZE (
    FILTER (
        'Sales',
        'Sales'[ReturnQuantity] > 3
    ),
    'Sales'[SalesKey],
    'Sales'[DateKey],
    'Sales'[ProductKey],
    'Sales'[SalesAmount],
    'Sales'[ReturnQuantity],



    'Sales'[ReturnAmount]
)
ORDER BY Sales[SalesKey]

Here, instead of specifying the Sales table as the first parameter, we are using
a table expression using the FILTER function to filter the Sales table to just those
rows where ReturnQuantity has a value greater than 3.

Although we have only touched on what is possible to do with DAX and
SSAS Tabular, there are a number of methods that can be used to retrieve and
aggregate data. However, what we have covered will help to get you started
on building data models with Excel Power Pivot and distributing them for
wider access using SSAS Tabular.



Summary
In this chapter, we looked at the DAX formula editor in Power BI Desktop,
including a look at some of the shortcut key combinations you can use to help
when typing in DAX expressions. We looked at Excel Power Pivot and
learned how to use it to build a data model inside an Excel workbook, much
like we did using Power BI Desktop. We then learned how to import that data
model into an SSDT project and how to extend it using DAX. We then
deployed the data model to an instance of SSAS Tabular. Finally, we learned
how to query the data once it was in the SSAS Tabular database, using
SSMS.

In the next chapter, we will return to the subject of the evaluation context,
moving beyond what we learned in Chapter 1, What is DAX? We will take a
more in-depth look at the difference between the row context and the filter
context, and how these affect DAX functions.



Getting It into Context
In this chapter, we will move beyond the basics, and build upon what you
learned about evaluation contexts in Chapter 1, What is DAX?.

We'll learn about evaluation contexts in more depth, including how Data
Analysis Expressions (DAX) are evaluated inside a context. We'll learn
about the difference between the row context and the filter context, and how
these affect different DAX functions. We'll also look at how changing filters
impact the evaluation of DAX functions. Finally, we'll look at some DAX
functions that can change the context under which an expression is evaluated.
These include the CALCULATE function, the ALL function, and the KEEPFILTERS
function.

The chapter is broken up into the following sections:

Introducing evaluation contexts—part 2
Deep diving into row context 
Deep diving into filter context 
Changing context using DAX functions



Introducing evaluation contexts –
part 2
The word context is derived from the Latin word contextus, which means
closely connected or interwoven. In modern language, context is the setting or
the set of circumstances around an event.

In DAX, when we talk about the evaluation context, we're talking about the set
of circumstances under which a DAX expression is evaluated, brought about
by the state of filters, slicers, interactions with visuals, and row and column
selections.

In Chapter 1, What is DAX?, we took a brief look at the two types of evaluation
context that exist in DAX, which are the following:

The row context
The filter context

In this chapter, we'll look at these in more detail. We will use examples to
help us understand how changes in context change the results that we get back
from DAX expressions when they are evaluated within that context.

Strictly speaking, there is also a third context: the query context. The
Microsoft documentation describes this as "the filters applied by the user interface of a
pivot table", while the same documentation describes the filter context as "the
filters applied by DAX expressions written in a measure". However, these filters are
almost identical in their effects, so we will not cover them separately.

A thorough understanding of how DAX expressions are evaluated within these
contexts is essential if you are to truly master using DAX as a business
intelligence (BI) professional, especially as you move on to more complex
DAX expressions. While the theory may appear simple, there are some subtle
considerations you will need to be aware of if you are to fully understand how
your DAX expressions are being evaluated.



Let's start with just about the simplest measure we can create, shown here:

Sum of Sales Amount Measure = SUM ( Sales[Sales Amount] )

As you might expect, this will create a measure that returns the sum of all
values in the Sales Amount column of the Sales table. If we now drag this
onto the report designer in Power BI Desktop or a pivot table in Excel, it will
give a single numeric value, as can be seen in Figure 5-1:

Figure 5-1: Returning the sum of sales with a measure

If we expand our pivot table by adding the Manufacturer field from the
Products table, we will get result shown in Figure 5-2:

Figure 5-2: Adding a measure to a pivot table

Again, this may well be what you expect to see, especially if you already have
some experience of using pivot tables in Excel. But how is this achieved,
without the need to change the definition of the measure? In fact, this is an



example of the filter context in action. In this case, it is an implicit filter
context that is automatically created by adding a field to the pivot table.

With each cell in the Total Sales Amount column, our Sum of Sales
Amount Measure is being calculated within a context. In this case, it is a
filter being applied that is equal to the value in the corresponding
Manufacturer row. It should also be noted that the Total row is not adding up
the values of each manufacturer; instead, it is evaluating our measure in the
context of all Manufacturer values.

If we were to add the Class column from the Product table to the columns of
our pivot table, we would be adding another element to the filter context. This
means that with each cell, our measure is now being filtered, based on the
value of the corresponding Manufacturer and Class, as can be seen in Figure
5-3:

Figure 5-3: Adding a measure to a pivot table with multiple columns

If we look at the totals, the totals for each Class column will be evaluated
within the context of the corresponding Class value, and for all manufacturers.

Next, we are going to use the same expression to create a calculated column
in the Sales table. This time, we'll call it Sum of Sales Amount Column, to
differentiate it from our measure, like this:

Sum of Sales Amount Column = SUM ( Sales[Sales Amount] )



As before, we'll create a pivot table that includes Manufacturer. However,
we now get a very different result, as can be seen in Figure 5-4:

Figure 5-4: Getting a unexpected result with a measure

Why is this? Well, if we look at Figure 5-5, we can see that for every record
in the Sales table, the value in the new calculated column is the total sum of
all the values in the Sales Amount column:



Figure 5-5: Adding a measure that gives a sum total to a table

This time, this might not have been what you expected. This is because
calculated columns do not use the filter context. Instead, they are evaluated
using the row context, or, in other words, within the context of each row. Later
in this chapter, we will look at a way you can change this behavior, using
something called context transition.



Deep diving into row context 
The simplest way to explain row context is by adding a calculated column to a
table. Whenever we create a calculated column, the DAX expression behind it
will be evaluated using the row context. Each row in a table will have its own
row context that consists of the values in each of the columns for that row.

Let's show this by adding a calculated column to the Sales table. In this
instance, we'll add a column that calculates the Sales Amount, plus an
additional 20 percent to represent sales tax. We can do this using the
following DAX expression:

Sales Amount with Tax = Sales[Sales Amount] * 1.2

Once created, DAX will iterate through all the rows in the Sales table,
evaluating the expression using the value of the Sales Amount column of the
current row. It will work its way through the table row by row, with each row
providing the row context needed to evaluate the expression.

If we look at the Sales table, with our new calculated column, we will see the
result will be different for each row and will depend on the value held in the
Sales Amount column:



Figure 5-6: Adding a calculated column to a table

So, as can be seen in the preceding screenshot:

The value for the first row is £115.99, which equates to the value held in
the Sales Amount column of £96.66, multiplied by 1.2.
For the second row, it is £1,723.10, which again equates to the value
held in the Sales Amount column, multiplied by 1.2.
This will continue for every row in the table, each row using its own
row context.

At the point when our DAX expression for the calculated column is evaluated,
it only knows about the values of the columns in the current row. Unlike the
filter context, it does not follow relationships, so it does not know about the
values in the related row of a table on the one side of a one-to-many
relationship. It also doesn't know about the values in other rows of the table.

If we look at the data model we're using for the examples in this chapter, we
will see that the Sales table is a fact table. It is on the many side of a one-to-
many relationship, with the Date and Product tables, as can be seen in Figure
5-7:



Figure 5-7: One-to-many relationships in a data model

If we try to create a calculated column that uses an expression referencing a
column in a related table, we will see that it generates an error. Let's do this,
using the following expression:

Sales Unit Cost = Sales[Sales Quantity] * Product[Unit Cost]

This results in the following error:



"A single value for column 'Unit Cost' in table 'Product' cannot be determined. This 
can happen when a measure formula refers to a column that contains many values 
without specifying an aggregation such as min, max, count, or sum to get a single 
result."

However, there is a way to fetch the value of a specified column in a related
table on the one side of a one-to-many relationship. To do this, we use the
RELATED function.

So, to achieve what we were trying to achieve in the previous expression, we
need to modify it, as follows:

Sales Unit Cost = Sales[Sales Quantity] * RELATED ( Product[Unit Cost] )

For the RELATED function to work, it requires a row context. It also needs a
relationship to exist between the current table and the table that contains the
related data. The function will follow a chain of one or more many-to-one
relationships to get the required value.



Iterator functions
When you create a calculated column, DAX will implicitly create the row
context. However, let's try to create a measure using the same expression that
we used to create one of our calculated columns, as follows:

Sales Amount with Tax = Sales[Sales Amount] * 1.2

We will get a similar error message to the one we got when we tried to
reference a row in a related table without using the RELATED function, as can be
seen in the following code:

"A single value for column 'Sales Amount' in table 'Sales' cannot be determined. 
This can happen when a measure formula refers to a column that contains many values 
without specifying an aggregation such as min, max, count, or sum to get a single 
result."

What this is saying is that it doesn't know which row in the Sales table to
refer to. When creating a measure, we can only refer directly to a column in a
table if we use it with an aggregation function, such as the SUM function.
However, we can only use this method to aggregate the values in a column. It
cannot be used to evaluate an expression against the column.

In order to be able to create a measure that evaluates an expression against a
column in a table, we need to be able to explicitly create a row context.
Fortunately, we can do this using one of the iterator functions. An iterator
function will iterate over the rows in a specified table and will either apply a
filter or evaluate an expression.

In addition to the FILTER function, which applies a set of filter rules to return a
filtered table, there are several X functions. These are so-called because they
have an X as the last character of their name.

These X functions will iterate over a specified table, evaluating a given
expression against each row in that table, before applying some form of
aggregation. Examples of X functions include AVERAGEX, COUNTX, MAXX, MINX, RANKX,



and SUMX. In effect, they create a temporary calculated column that is then used
to perform the aggregation, before being dropped.

All these X functions have a corresponding non-iterating aggregation function.
Each of the non-iterating aggregation functions uses the X version of their
function behind the scenes, in a process known as syntax sugar.

Syntax sugar is a process whereby the language contains simplified versions of
more complex functionality, making it easier for people to read and write. There are
many examples of this in the DAX language.

For example, previously, we used the SUM function to find the total of all the
values in the Sales Amount column of the Sales table. To define that
measure, we used the following expression:

Sum of Sales Amount Measure = SUM ( Sales[Sales Amount] )

To achieve this result, DAX will use the SUMX function. In reality, the
expression that is actually being evaluated is the following:

SUMX ( Sales, Sales[Sales Amount] )

While this example might not look particularly interesting, it means that we
can use iterator functions to help us reduce the number of calculated columns
we need. Remember the calculated column we created, at the start of this
section, to calculate the sales amount plus sales tax? For that, we used the
following expression:

Sales Amount with Tax = Sales[Sales Amount] * 1.2

However, using the SUMX iterator function, we can replace this calculated
column with a measure, using the following expression:

Sales Amount with Tax = SUMX ( Sales, Sales[Sales Amount] * 1.2 )

You may remember that this is the preferred approach as it reduces the
overall memory footprint of your data model. Wherever possible, you should
always create a measure unless there is a specific requirement for a new
column in a table, or there is no way of creating the same functionality
without using a calculated column.



Iterator functions can also be nested, with each iterator retaining its own row
context. The following is a typical example of using nested iterators:

Sales Amount with Tax (Deluxe Products) =
SUMX (
    FILTER (
        Sales,
        RELATED ( 'Product'[Class] ) = "Deluxe"
    ),
    Sales[Sales Amount] * 1.2
)

In this example, we can see the following:

The FILTER function is the inner iterator and is being used to filter rows in
the Sales table to those relating to products in the Product table with a
Class equal to Deluxe.
The outer iterator is the SUMX function, which is used to calculate the total
of product sales, with a sales tax of 20% added.



Deep diving into filter context 
As we have seen already in Chapter 1, What is DAX?, the filter context can be
defined as a set of filters that are applied over the tables in a data model
before a DAX expression is evaluated. The context in which a DAX
expression is evaluated directly affects the result that is returned. This means
that the same DAX expression can return different results, depending upon the
context.

Filter context exists in the following:

All visuals in Power BI
A pivot table in Excel

Filter context can be applied through use of the following:

Rows and columns in a visual or a pivot table
Slicers
Filters
Interaction with visuals (acting as filters)
The CALCULATE function

A DAX expression is only evaluated when all the filters coming from the
context just listed have been applied to the tables in the data model. In the
case of a matrix visual in Power BI or a pivot table in Excel, this means that
for every cell, including totals, a DAX expression is evaluated only when the
context of the cell has been applied.

Let's look at through an example. Start by creating a new measure called Sales
Count, using the following expression:

Sales Count = COUNTROWS ( Sales )

As you might expect, this will return the number of rows in the Sales table. If
we now add this to a pivot table, along with the Manufacturer field from the
Product table, we will get the result shown in Figure 5-8:



Figure 5-8: Adding a count of sales to a pivot table

If we take, for example, the cell that is selected in Figure 5-8, then we would
say the initial filter context for this cell is coming from the row, which in this
case is where Product[Manufacturer] equals Contoso, Ltd.

The initial filter context is the filter context that is applied to tables in the data
model before any changes, if any, are made using the CALCULATE function.

If we were to add a slicer based on the Year field in the Date table, then the
initial filter context would include Year from the slicer, in addition to the
Manufacturer coming from the row of the pivot table.

For example, let's look at the screenshot shown in Figure 5-9:



Figure 5-9: Initial filter context

Here, the initial filter context for the highlighted cell is as follows:

Date[Year] = Year 2009 (from the slicer)
Date[Quarter] = Q3 (from the pivot column)
Product[Manufacturer] = The Phone Company (from the pivot row)

In order to follow through what is happening here in detail, we need to
remember that filters propagate down through relationships, from the one side
to the many side of a one-to-many relationship. In this instance, the following
steps take place prior to our DAX measure being evaluated:

1. All rows in the Date table are filtered to only include those where the
year is Year 2009 and the quarter is Q3.

2. The filtered rows are propagated down from the Date table to the Sales
table.

3. All the rows in the Product table are filtered to only include those where
the Manufacturer is The Phone Company.



4. The filtered rows are propagated down from the Product table to the
Sales table.

5. The Sales table exists with only the rows that have been filtered by the
propagated filters.

Only once these steps have been followed is our DAX expression for Sales
Count evaluated. This is repeated for each row, including the Total, which
does not include the filter coming from the Product table in the initial filter
context. It is important to remember that each cell in a row or a column of a
matrix visual or a pivot table is evaluated in its own context. It is not adding
up values coming from other cells, as you might expect.



Expanded tables
Before we go any further, we are going to explore the concept of expanded
tables. In DAX, each table in a data model has an expanded version that
contains all the columns of the original table, plus all the columns of tables
related to it through many-to-one and one-to-one relationships. This concept
will help you to understand the filter context, by showing you which columns
in a table will propagate their filters to a related table.

In Power BI, you can have bidirectional relationships, which will add columns to an
expanded table through a many-to-one relationship. However, they will not add
columns to a table on the one side of the relationship. Instead, the filter propagates
through using filtering columns. Although internally they are different, expanded
columns and filtering columns act in the same way.

To illustrate this, let's take a simplified version of the data model that we have
been working with in this chapter, which is shown in Figure 5-10:

Figure 5-10: The simplified data model



In this case, the base table is the Sales table, and it is related to the Date table
and the Product table through many-to-one relationships. For this example,
the filter direction on the relationship between the Sales table and the Date
table has been amended so that it's bidirectional.

Figure 5-11 illustrates how the relationships in the data model, shown in
Figure 5-10, will create expanded versions of each table:

Figure 5-11: Expanded tables

Looking at this chart, we can tell the following about the expanded tables for
this data model:

If we start with the Sales table, the many-to-one relationships it has with
the Product and Date tables means that its expanded table contains all of
the columns of the Sales table, plus all of the columns of the
Product table, plus all of the columns of the Date table.
The Product table has no many-to-one relationships. Therefore, its
expanded table only contains the original columns.
The Date table has no many-to-one relationships, so its expanded table
only contains the original columns. However, as the filter direction on



the relationship is bidirectional, filters on any of those columns will
propagate through to the Sales and Product tables.

Using this chart, we can see which expanded tables will be affected by a filter
context applied to a column. For example, if a filter were applied to the
Product Name column in the Product table, it would filter the expanded
Sales table. It would also filter the Date table, but, as this is a one-to-many
relationship, this would not be through an expanded table. The expanded
version of the Date table only contains the original columns of the Date table.
It is the bidirectional nature of the relationship between the Sales and Date
tables that causes it to be filtered by the Product Name column, through
filtering columns.

When you have a bidirectional relationship in a Power BI data model, DAX will,
behind the scenes, add the CROSSFILTER function to an expression to make the filtering
work on the one-to-many side of the relationship. Only with a one-to-one relationship
will the tables on both sides have expanded tables, and both expanded tables would
have identical columns.

For this example, we have only used a very simple data model, so the benefit
of understanding expanded tables may not be so obvious. However, as soon as
you start working on larger and more complex data models, the importance of
this concept will become apparent. This will be especially so when we start
to look at DAX functions that allow us to change contexts, which we will look
at in the next section.



Changing context using DAX
functions
Having covered the evaluation contexts in some detail, we are now going to
look at some ways in which we can use DAX functions to change the
evaluation context. We'll start off by looking at how we can change the
behavior of an expression that is evaluated using the row context.



Context transition
You may remember that, at the start of this chapter, we looked at how an
expression we used for a measure did not work in the same way when used in
the definition of a calculated column. This is because calculated columns are
evaluated using row context, and not filter context. However, it is possible to
convert an expression from using the row context into using the filter context
by wrapping the expression with the CALCULATE function.

For example, we can define a column with the following expression:

Sum of Sales Amount Column = SUM ( Sales[Sales Amount] )

But this will give us the same figure for each row: the total of all the values in
the Sales Amount column. Now, let's amend this expression using the CALCULATE
function, as follows:

Sum of Sales Amount Column = CALCULATE ( SUM ( Sales[Sales Amount] ) )

We will see that our table now looks different. The values in our calculated
column match the value in the Sales Amount column, as can be seen in Figure
5-12:



Figure 5-12: Using context transition with a measure to give row context

By using the CALCULATE function, the following happens:

We are using a feature called context transition.
When used in the definition for a calculated column, the CALCULATE function
converts the row context into a filter context.
With each execution of the expression that defines our calculated column,
it now uses the filter context, adding a filter that includes the current row
of the Sales table.
In fact, whenever you create a measure, it is evaluated internally, with a
hidden CALCULATE function wrapped around it.

So, for example, we could create our column using the Sum of Sales Amount
Measure we created earlier in this chapter, like this:



Sum of Sales Amount Column = [Sum of Sales Amount Measure]

In this case, there would be no need to wrap it with the CALCULATE function, as
this is already being done by DAX behind the scenes. The measure would
take any available row context and change it to a filter context, giving us the
same results we saw in Figure 5-12.



Changing the filter context
In Chapter 1, What is DAX?, we looked at the CALCULATE and ALL functions, and
how these could be used in combination to alter the filter context. It's worth
reiterating that the CALCULATE function and its table variant, CALCULATETABLE, are the
only functions in DAX that can change a filter context.

At this point, it might be worth rereading the section in Chapter 1, What is
DAX?, that covers the CALCULATE function. The rest of this section will look at
examples of the CALCULATE function being used to change the filter context.



Using the ALL function
The ALL function will return all the rows in a table and ignores the filter
context. By itself, it does not change the filter context. Only when used as a
filter with the CALCULATE function does it modify the filter context. You can
specify either a table name or column names for the parameters of the ALL
function. If you specify a table name, then it will ignore all the filters on that
table. If you specify column names, then it will ignore only the filters on those
columns. The ALL function is not used by itself; instead, is used with other
functions such as CALCULATE, altering the results returned by those functions.

There is a similar function called ALLEXCEPT that works in the same way as ALL, but it will
ignore filters on all of the columns, except those specified as parameters for the
function.

Let's return to the example that we used in Chapter 1, What is DAX?, where we
were calculating the percentage of sales quantity by manufacturer. To do this,
we created the following measure:

%SalesQuantity =
DIVIDE (
    // The sum of sales quantity - current filter context
    SUM ( Sales[Sales Quantity] ),
    // The sum of sales quantity - current filter context altered
    // to remove filter from Manufacturer field
    CALCULATE (
        SUM ( Sales[Sales Quantity] ),
        ALL ( 'Product'[Manufacturer] )
    )
)

In this case, we wanted to remove the filter from the Manufacturer column of
the Product table, because this was the column we were splitting the data by
on the pivot table.

Let's say we now want to add a couple of slicers to our report, to filter the
Class and Color columns and show the percentage of those filtered products
against the overall product sales. To do this, we would need to create a copy



of our %SalesQuantity measure and change it, to remove all the filters from
the filter context of the Product table.

To do this, we need to alter the second parameter of the DIVIDE function. We
could include the Class and Color columns for the ALL function to remove these
from the filter context. Alternatively, we could just specify the Product table
to remove all the filters from the filter context. As we are looking to compare
the filtered sales quantity against the sales quantity for all products, the
second option seems to be the most sensible choice.

The code for the new measure should be as follows:

%OverallSalesQuantity =
DIVIDE (
    // The sum of sales quantity - current filter context
    SUM ( Sales[Sales Quantity] ),
    // The sum of sales quantity - current filter context altered
    // to remove all filters from Product table
    CALCULATE (
        SUM ( Sales[Sales Quantity] ),
        ALL ( 'Product' )
    )
)

Figure 5-13 shows the results the %OverallSalesQuantity measure, used with
a pivot table showing the sales quantity for Silver, Deluxe products compared
against the overall sales quantity:



Figure 5-13: Pivot table with measures and slicers

In later releases of DAX, there is a new function called REMOVEFILTERS. This is
effectively an alias for the ALL function, but it can only be used as a filter for
the CALCULATE function, and not as a table expression.



Using filters with CALCULATE
Now, suppose that we only need our pivot table to show quantities for silver
products. We'll start by creating a new measure for total sales quantity, but
this time, we will only include products in the Product table where the Color
column equals Silver. To do this, we can add a Boolean expression as the
filter condition of the CALCULATE function. In this case, the following DAX
expression will create the measure that we need:

Sum of Sales Quantity Measure - Silver =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    'Product'[Color] = "Silver"
)

To fully understand what is going on with this expression, we need to be
aware that this measure uses compact syntax. When evaluated, the DAX
engine will automatically use an expanded version that uses the FILTER function
and the ALL function. In reality, the code for the measure would be as shown
here:

Sum of Sales Quantity Measure - Silver =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    FILTER (
        ALL ('Product'[Color] ),
       'Product'[Color] = "Silver"
    )
)

The reason for this is to overwrite any existing filters on the column the with
the explicit filter being applied by the Boolean expression. This may lead to
undesired results, as can be seen in Figure 5-14:



Figure 5-14: Getting undesired results from a measure with explicit filter

Here, the result of the expanded syntax is to remove the external filter context
generated by the matrix visual. However, there is a way to resolve this, by
using the KEEPFILTERS function.

We can amend our measure to use the KEEPFILTERS function, like this:

Sum of Sales Quantity Measure – Silver =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    KEEPFILTERS ( ‘Product’[Color] = “Silver” )
)



Using the amended measure in our matrix, we now get the desired results, as
can be seen in Figure 5-15:

Figure 5-15: Keeping filters to get the expected results from a measure

As the name suggests, the KEEPFILTERS function will keep any existing filters,
while applying the new filter being created by the Boolean expression. In this
example, for each row, the measure is counting the Sales Quantity for those
products where the Color is equal to the color coming from the visual and
where the color is Silver. Obviously, this means that we now only get a figure
where the color coming from the visual is equal to Silver. For all the others,
there are no products that match the filter context.



Summary
In this chapter, we took a more in-depth look at evaluation contexts, focusing
on the two different types of evaluation contexts: row context and filter
context.

First, we took a detailed look at the row context, learning how this applies
when you create a calculated column or use a function that iterates through
the rows of a table. We followed this with a detailed look at the filter
context, learning about the different sources of filters, and how these can
affect the results coming back from a DAX expression. Then, we learned
about the concept of expanded tables, and how these can help you to
understand how filters can propagate through related tables. Finally, we
looked at how you can change a context in DAX. We learned how you can
change a row context into a filter context, and how you change filter context
with the CALCULATE function.

In the next chapter, we will learn more about the structure of DAX syntax.
We'll also look at the different groups of functions that are available in DAX,
including aggregation functions and parent-child functions.



Section 2: Understanding DAX
Functions and Syntax
This section comprises an in-depth look at some important DAX functions,
specifically those related to tables, date and time, filtering, and statistics. In
addition to describing the functions in detail, part 2 offers a more hands-on
approach, walking you through some practical examples of the functions in
use:

Chapter 6, Progressive DAX Syntax and Functions
Chapter 7, Table Functions
Chapter 8, Date, Time, and Time Intelligence Functions
Chapter 9, Filter Functions
Chapter 10, Statistical Functions
Chapter 11, Working with DAX Patterns



Progressive DAX Syntax and
Functions
In this chapter, we'll start by taking a more in-depth look at the structure of
DAX syntax, including naming requirements. We'll learn more about
relationships, including how we deal with relationships between tables that
involve multiple columns and how to create virtual relationships.

Next, we will learn about the different groups of functions that can be found
in the DAX language. We'll then start to look at these groups in more detail,
beginning with aggregation functions. We'll round off this chapter by learning
about the functions that will help to deal with parent-child hierarchies.

This chapter is broken down into the following sections:

Breaking down DAX syntax
Dealing with relationships
Looking at DAX functions
Introduction to aggregation functions
Functions for parent-child hierarchies



Breaking down DAX syntax
So far, we've looked at quite a few examples of DAX expressions, but we
haven't looked in detail at the structure of a typical DAX expression.

Let's set that straight by breaking down a typical DAX expression. For this
one, we will define a measure that will give us the total sum of values in the
Sales Quantity column of the Sales table, for products in the Deluxe class:

1 Deluxe Sales Quantity
2 =
3 CALCULATE
4 (
5 [Sum of Sales Quantity Measure]
6 ,
7 'Product'[Class]
8 = "Deluxe"
9 )

This DAX expression can be broken down as follows:

1. We start with the name we want to give to the measure, which in this
case is Deluxe Sales Quantity.

2. The equals sign operator (=) defines the start of the DAX formula. When
writing DAX expressions with Excel Power Pivot and SSAS Tabular,
the equals sign will have a colon before it (:=).

3. Our measure uses the CALCULATE function, which takes an expression or
measure as the first argument and then modifies the filter context in
which it is evaluated, using the filters given in the following parameters.

4. The opening parenthesis specifies the start of the arguments being
passed to the CALCULATE function.

5. The measure Sum of Sales Quantity Measure calculates the total sum of
values in the Sales Quantity column of the Sales table. It is defined
using this expression:

Sum of Sales Quantity Measure = SUM ( Sales[Sale Quantity] )

6. The comma separates the expression passed as the first argument from
the filter argument.



7. This gives the table and column name that we will use to modify the
initial filter context used to evaluate the measure or expression given in
the first argument.

8. This specifies the value that we want to filter the given column for,
which will then define the new filter context.

This DAX expression ensures that the Sum of Sales Quantity Measure only
includes values for sales of products in the Product table where the
Class column has the value of Deluxe.

A DAX expression will return either a scalar value or a table. Where a DAX
expression returns a table, it must be used with another DAX function that
will evaluate the table and return a scalar value. The only exception to this is
where an expression returns a single row table consisting of a single column,
in which case it will be treated as a scalar value.

Most DAX functions require at least one argument. These can consist of
tables, columns, expressions, or values. Where a function doesn't require any
arguments, it will still need to include an empty set of parentheses after the
function name. For example, you must type BLANK() and not BLANK.



Naming requirements
Within a data model, all tables must be identified using unique names. Within
each table, the names of the columns must be unique, including calculated
columns. However, the same column name can be used in multiple tables.

All object names in DAX are case-insensitive, which means that you could
use either PRODUCT or Product to refer to the same table.

Columns (including calculated columns) and measures need to belong to a
table. This can be done implicitly when you create a column or measure
within a table, or explicitly, by specifying the name of the table where a
measure should be defined.

When writing DAX functions, you should always adhere to the following
naming convention:

A table name should be specified as it appears in the data model, for
example, Sales.
A column name should be specified as it appears in the data model with
square brackets enclosing it. Although not strictly necessary, for good
practice, it should always be fully qualified by prefixing it with the
name of the table that contains the column, for example, 'Product'[Class].
If a table name contains spaces or uses a reserved keyword, it must be
enclosed within single quotes, for example, 'Product Categories'. You will
also need to enclose it with single quotes if it contains characters
outside of the ANSI alphanumeric character set.
Measure names must be unique within the data model.
Measure names must always be specified in square brackets, and they
must never be prefixed by the table name.

A fully qualified column name is always required when you reference a
column in the following situations:



A column is used as an argument to the VALUES, ALL, ALLEXCEPT,
and RELATEDTABLE functions, or any of the time intelligence functions.
A column is used as the filter argument for the CALCULATE and
CALCULATETABLE functions.

The following cannot be used in the names of tables, columns, or measures:

Leading or trailing spaces; unless the spaces are enclosed by name
delimiters, brackets, or single apostrophes
Control characters
Any of the following characters: .,;':/\*|?&%$!+=()[]{}<>

In this section, we've learned about the DAX syntax. Now, let's proceed
toward the next section, which talks about dealing with relationships.



Dealing with relationships
In Chapter 3, Building Data Models, we looked at creating physical
relationships between tables as part of our look at data modeling. For
example, in our data model, we have a physical relationship defined between
the Product and Sales tables, as shown in Figure 6-1:

Figure 6-1: The one-to-many relationship between the Product and Sales tables

A physical relationship in a data model requires that at least one side of the
relationship is linked to a column in a table that contains unique values. In the
preceding example, we've built the relationship using the ProductKey column
of the Product table linked to the ProductKey column of the Sales table,
creating a one-to-many relationship.

With this relationship, any filters applied to columns of the Product table are
propagated using a filter on the Sales table. The list of values filtered in the



ProductKey column of the Product table is transferred to a filter that is
applied to the ProductKey column of the Sales table.

However, there may be times when you may not be able to create a physical
relationship between two tables. This could be because neither of the tables
contains a column that consists of unique values, which is required by the one
side of a one-to-many relationship (although it is now possible to create
many-to-many relationships in Power BI Desktop). It may be the case that
unique values involve two or more columns in a table, whereas relationships
in a Tabular data model can only be created between tables using a single
column on each side.

One way to deal with this situation is to combine the columns required in the
relationship, using either the CONCATENATE function or the COMBINEVALUES function.
The following gives the example where there is a need to create a relationship
between two tables called Dates and Sales, using the columns Year and
DayOfYear.

First, you would need to create a calculated column on the Dates table as
shown:

Dates[SaleDate] = CONCATENATE ( Dates[Year], Dates[DayOfYear] )

Then, you would create another calculated column on the Sales table:

Sales[SaleDate] = CONCATENATE ( Sales[Year], Sales[DayOfYear] )

You would then complete the process by creating a physical relationship
between the newly created Dates[SalesDate] and Sales[SaleDate] columns.



Dealing with multiple relationships
While it is possible to create multiple relationships between tables, only one
of them can be active at a time. A classic example of this is where you have
several dates in a data table, all of which are related to a single date in a date
table. In the example shown in Figure 6-2, we have two date fields in the
Sales table, both of which are joined to the Date table. The active relationship
shown here is between the Date[DateKey] and Sales[SalesDateKey] columns:

Figure 6-2: M ultiple relationships between tables with active relationship highlighted

Figure 6-3 shows the second relationship between the Date[DateKey] and
Sales[DispatchedDateKey] columns. This relationship is inactive, which is
indicated by the dashed line:



Figure 6-3: M ultiple relationships between tables with inactive relationship highlighted

To make use of the active relationship, all you need to do is use an
appropriate field from the Sales table, such as SalesKey, with a pivot table or
matrix visual and aggregate it by a field from the Date table. Figure 6-4
shows a count of sales by date:



Figure 6-4: M aking use of an active relationship to count sales by date

However, to be able to use an inactive relationship, you will need to create a
measure that uses the USERELATIONSHIP function inside the CALCULATE function. In the
following example, we will create a measure that will use the inactive
relationship to calculate the number of sales dispatched on a particular date:

Orders Dispatched =
CALCULATE (
    COUNT ( Sales[SalesKey] ),
    USERELATIONSHIP ( 'Date'[Datekey], Sales[DispatchedDateKey] )
)

If we now add this measure to our pivot table or matrix visual, it will show us
the number of sales made on a given date, along with the number of sales
dispatched, as can be seen in Figure 6-5:



Figure 6-5: Using a measure with an inactive relationship to show orders dispatched by date

It is important to remember that the USERELATIONSHIP function will not work
unless an inactive relationship has already been created in the data model.

An alternative to this method of dealing with multiple relationships would be
to have multiple date tables. For example, you could have a date table called
SalesDate and another called DispatchDate, each with an active relationship
to the appropriate column in the Sales table. However, with this approach, it
would be more complex to replicate the example given in the preceding
screenshot. You would instead need to add a filter or slicer to pick a sales
date and then you could use the pivot table or matrix visual to show the
breakdown of sales made on that date, by the date of dispatch.

In the end, which method you choose to use will depend on the complexity of
your data model, along with how you are intending to present your data.



Virtual relationships
Depending on the version of Excel Power Pivot, SSAS Tabular, or Power BI
you are using, there are a couple of ways of achieving virtual relationships
between tables.

If we return to our data model, we will start by removing all of the physical
relationships between the Date table and the Sales table, as shown in Figure
6-6:

Figure 6-6: Removing relationships between tables

The first method we will look at will work with any version of the DAX
language. To replicate the results we obtained in the previous section, we



need to create two new measures. The first measure will create a virtual
relationship between the Date[DateKey] and Sales[SalesDateKey] columns:

DateKey to SalesDateKey VR =
CALCULATE (
    COUNT ( Sales[SalesKey] ),
    FILTER (
        ALL ( Sales[SalesDateKey] ),
        CONTAINS ( 
            VALUES ( 'Date'[Datekey] ), 
            'Date'[Datekey], Sales[SalesDateKey] 
        )
    )
)

This measure is using the FILTER and CONTAINS functions to match rows in the
Sales table with the selected date coming from the Date table, creating a
virtual relationship between the Date[DateKey] and
Sales[SalesDateKey] columns. Using the same logic, we can create a second
measure that will create a virtual relationship between the Date[DateKey] and
Sales[DispatchDateKey] columns:

DateKey to DispatchDateKey VR =
CALCULATE (
    COUNT ( Sales[SalesKey] ),
    FILTER (
        ALL ( Sales[DispatchedDateKey] ),
        CONTAINS (
            VALUES ( 'Date'[Datekey] ),
            'Date'[Datekey], Sales[DispatchedDateKey]
        )
    )
)

If you are working with DAX using more recent versions of Power BI
Desktop or versions of Excel Power Pivot and Analysis Services from 2016
onward, you can make use of the INTERSECT function to achieve the same results
as in the preceding. Here is the DAX expression to create the revised measure
for the Date[DateKey] to Sales[SalesDateKey] virtual relationship:

DateKey to SalesDateKey VR2 =
CALCULATE (
    COUNT ( Sales[SalesKey] ),
    INTERSECT (
        ALL ( Sales[SalesDateKey] ),
        VALUES ( 'Date'[Datekey] )
    )
)



If we apply all three measures to a pivot table or matrix visual, we get the
result shown in Figure 6-7:

Figure 6-7: Adding virtual relationship measures to a pivot table

As you can see, we get exactly the same result as we did with the physical
relationship between these tables.

If you are using a version of Power BI Desktop released after February 2017,
or a very recent version of Excel Power Pivot or SSAS Tabular, then there is
a third way you can create a virtual relationship, by using the TREATAS function.

The TREATAS function will let you take filters from the current filter context and
apply them to a table in your data model. Also, it will allow you to pass
multiple filters from the source table to the target table.

The following is the DAX expression used to revise the measure for the
Date[DateKey] to Sales[SalesDateKey] virtual relationship:

DateKey to SalesDateKey VR3 =
CALCULATE (
    COUNT ( Sales[SalesKey] ),
    TREATAS (
        VALUES ( 'Date'[Datekey] ),
        Sales[SalesDateKey]
    )
)



While a physical relationship will always give the best performance if you do
need to create a virtual relationship, and you are working with the latest
version of DAX, then you should consider using the TREATAS function as the best
way to implement this. The TREATAS function gives the best performance, while
the method using the FILTER function is the worst in terms of performance. It
does, however, have the advantage that it works across all versions of DAX.

Let's move ahead toward the next section now, which talks about DAX
functions.



Looking at DAX functions
The DAX language contains over 250 different functions. These functions are
split into two different types, depending on the result returned. They can also
be grouped depending on the functionality performed.



Function types
When evaluated, a DAX function will perform a specified action against the
data in your data model and return a result. These functions fall into one of
two categories depending on whether they return a single value or a table of
data.

Those functions that return a single value are called scalar functions and form
the majority of functions in the DAX language. They are typically used in
expressions used for creating measures and calculated columns, which require
a scalar value. These are then used as the input value to a pivot table or a
Power BI visual. The following is an example of a scalar value being used to
create a measure:

SumOfSalesQuantity = SUM ( Sales[SalesQuantity] )

Here, the SUM function will add together all the values in the SalesQuantity
column of the Sales table and return a single total value.

Functions that return Boolean values, such as the IF function, can also be
considered scalar as they return a single value of either TRUE or FALSE.

Functions that return a table of data are called table functions. These functions
cannot be used directly in expressions that are used to define measures or
calculated columns, but instead are used as the input for other DAX functions.
Any function that iterates over a table, such as the SUMX function, requires a
table for the first argument and is an ideal candidate for using with the output
of a table function:

Very large sales amount = 
SUMX (
    FILTER (
        Sales,
        Sales[Sales Quantity] >= 1000
    ),
    Sales[Sales Amount]
)



In the preceding example, the table function, FILTER, is used to return a table
containing only those records from the Sales table where the value in the
Sales Quantity column is greater than or equal to 1,000. This is then used as
the table argument for the SUMX function, which iterates over the table and sums
the values in the Sales Amount column.

Another use for table functions is in the definition of a calculated table.
Unfortunately, calculated tables are not currently available with Excel Power
Pivot. The following shows an example of this:

Product Sales =
SUMMARIZE (
    Sales,
    'Product'[ProductKey],
    "Total Sales",
    SUM ( 'Sales'[Sales Quantity] )
)

This will add a calculated table to your data model, called Product Sales,
which contains the Product Key and the Total Sales amount for that product
key.

Finally, table functions can be used with the EVALUATE statement to query your
data model, using tools such as Excel, SQL Server Management Studio, or
DAX Studio:



Figure 6-8: Evaluating a DAX expression in DAX Studio



Figure 6-8 is a screenshot is from DAX Studio, showing a query designed to
return rows from the Sales table, where the Sale Quantity is greater than or
equal to 1,000, ordered in descending order of Sales Quantity.

There is a special case with table functions when they return a single row
with a single column - essentially a single value. In this case, DAX will
attempt to automatically convert the table returned into a scalar value when
needed. However, you should avoid using table functions in this way, as there
is always the risk that, in the future, the function will return multiple rows,
leading to an error.

Table functions cannot be used as the input to a pivot table or visual, unless
the function returns a single row with a single column, as described earlier.



Function groups
DAX includes a rich set of functions that allow you to perform aggregations,
look up values in related tables, and manipulate text and perform time-based
business intelligence. If you have used formulas in Excel, then many will
appear very similar. However, you should remember that while Excel is
based around cells, DAX works with columns and tables. By default, a DAX
function will reference a complete column or table, and you will need to add
filters to the formula if you require a particular subset of the data held in a
table.

DAX functions can be grouped depending on their functionality. The
following lists each of these groups, along with a brief explanation of what
functionality the functions in that group provide:

Aggregation functions: These functions will aggregate the values in a
column of a table, or will apply aggregation to an expression that is
evaluated by iterating over a table. Functions in this group will return a
scalar value.
Date and time functions: These functions are very similar to the date
and time functions found in Excel, except that they make use of the date
and time data types used in SQL Server.
Filter functions: These functions can be used to look up values in
related tables, using the relationships that exist between tables in your
data model. They allow you to filter tables based on specific values and
manipulate filter contexts.
Information functions: These functions look at the table, column, or
value passed in as an argument and tell you whether the value matches
the type that is expected. Most of the functions in this group will return a
value of TRUE or FALSE.
Logical functions: These functions will apply a logical operation
against the parameters passed and return a value of TRUE or FALSE
depending on the results of the logical operation performed using the
parameters.



Mathematical and trigonometric functions: DAX provides a large
number of mathematical and trigonometric functions that are very
similar to those you will find in Excel, with the exception that there are
some differences in the numeric data types used.
Parent and child functions: Functions in this group help to manage data
presented as a parent-child hierarchy in your data model.
Statistical functions: These functions carry out statistically-related
aggregations, such as percentiles, standard deviations, and variances.
Text functions: Functions in this group work with tables and columns
and allow you to return part of a string, search for text within a string, or
concatenate string values. There are also functions that allow you to
format numbers and dates and times.
Time-intelligence functions: These functions allow you to create time-
based calculations that work with calendars and dates. When used with
aggregations or calculations, it is possible to create data comparisons
across different time periods. For example, using these functions, you
can easily carry out year-on-year and year-to-date comparisons on data.
To use these functions, you will need to include date tables in your data
model.

We've gone through the function types and groups in this section. In the next
section, we will learn about the aggregation functions.



Introduction to aggregation
functions
As we have already seen earlier in this chapter, the DAX language consists
of a large number of functions that can be grouped based on the type of
functionality they provide. In this section, we are going to take our first
detailed look at these groups, starting with a look at the aggregation group of
functions.

Aggregation functions provide a way to summarize or group data and
common examples include the AVERAGE, COUNT, MAX, MIN, and SUM functions. All of
these have their equivalent X function, such as SUMX. Instead of working against
a column of a table, these X functions apply the aggregation to the result of an
expression that is evaluated for each row of a table.



Aggregation function reference
The following gives a list of the functions found in the aggregation function
group:

AVERAGE: Returns the average of all of the numeric values in a column
AVERAGEA: Returns the average of all of the values in a column including
non-numeric text
AVERAGEX: Returns the average of an expression evaluated over a table
COUNT: Counts the rows in a table where the column has a non-blank
value and cannot operate on a Boolean data type
COUNTA: Counts the rows in a table where the column has a non-blank
value and can operate with Boolean data types
COUNTBLANK: Counts the number rows where the value in the column is
blank
COUNTROWS: Counts the number of rows in a table
COUNTX: Counts the numbers of values resulting from an expression
evaluated over a table
DISTINCTCOUNT: Counts the number of distinct values in a column
DISTINCTCOUNTNOBLANK: Counts the number of distinct values in a column, but
ignores blank values
MAX: Returns the largest value in a column or the larger value of two
scalar expressions, ignoring logical values
MAXA: Returns the largest value in a column or the larger value of two
scalar expressions, including logical values
MAXX: Returns the largest value obtained by evaluating an expression over
every row in a table
MIN: Returns the smallest value in a column or the smaller value of two
scalar expressions, ignoring logical values
MINA: Returns the smallest value in a column or the smaller value of two
scalar expressions, including logical values
MINX: Returns the smallest value obtained by evaluating an expression
over every row in a table
PRODUCT: Returns the product of the numbers in a column



PRODUCTX: Returns the product of an expression evaluated over every row
in a table
SUM: Returns the sum of all of the numbers in a column
SUMX: Returns the sum of an expression evaluated over every row in a
table



The MIN, MINA, and MINX
functions
These functions can be used to create both calculated columns and measures.
When creating a calculated column, you can create aggregations that use the
current row context to sum or count values retrieved from related rows in
another table. With measures, you can create aggregations that use both filters
defined within the formula and filters imposed by slicers, along with those
coming from the column headings, and row headings of a pivot table or
matrix visual.

Let's finish off this section by looking at three related functions from this
group, starting with the MIN function.

The syntax of the MIN function is as follows:

MIN ( <ColumnName or ScalarValue1> [, <ScalarValue2>] )

The MIN function gives you the choice of finding the smallest value in the
given column or the smaller of two scalar values. If you want to find the
smaller of two scalar values, then you will need to provide a second value as
the second parameter.

The MIN function will ignore the values of the Boolean data type and will
compare string values according to alphabetical order.

The syntax of the MINA function is as follows:

MINA ( <ColumnName> )

The MINA function is similar to the MIN function but does not allow for the
comparison of two values—instead, working with a single specified column.
Unlike the MIN function, it will handle Boolean data types and will consider
TRUE as 1 and FALSE as 0.



Finally, the syntax of the MINX function is as follows:

MINX ( <Table>, <Expression> )

The MINX function works by iterating over the rows of the specified table,
evaluating the given expression for every row in that table and then returning
the smallest value from the result. The table given as the first parameter can
be a table from your data model or a table returned by a table function.

Now, let's have a look at the next section, which covers the functions for
parent-child hierarchies.



Functions for parent-child
hierarchies
The last group of functions we will look at in this chapter is the one that helps
to deal with a parent-child relationship in a table. A common scenario for this
is an employee table, where one employee record may be related to another,
for example where an employee has a manager.

Figure 6-9 shows the table we will be working with as an example. All
employees other than the CEO have a parent employee ID that references their
manager's employee ID:

Figure 6-9: The employees table

This can be illustrated by converting it into an organization chart. As you can
see in the diagram shown in Figure 6-10, we have a hierarchy that consists of
four levels, with the CEO at the top:



Figure 6-10: Organization chart showing employee hierarchy

In this situation, we hit a problem with the Tabular data model. It is simply not
possible to create a circular relationship between a table and itself, in the
way we might with a relational database. Fortunately, DAX gives us a set of
functions that help to get around this problem, giving us a way to normalize
the relationship as a hierarchy.



Parent and child function reference
The following gives a list of the functions found in the parent and child
function group. Together, these five functions give us a way to normalize a
parent-child relationship in a table and represent it as a hierarchy:

PATH: Returns a delimited text string that contains the identifiers of all of
the parents to the current identifier, starting with the root of a hierarchy
PATHCONTAINS: Returns TRUE if the specified item exists in the given path
PATHITEM: Returns the item in the specified position of the delimited list
produced by the given path function
PATHITEMREVERSE: Returns the item in the specified position of the delimited
list produced by the given path function, but counting backward from the
last item in the path
PATHLENGTH: Returns the number of items in the delimited list produced by
the given path function



The PATH, PATHCONTAINS, and
PATHLENGTH functions
Let's start with the PATH function. The syntax of the PATH function is as follows:

PATH ( <ID_ColumnName>, <Parent_ColumnName> )

This function will return all of the IDs that are related to the current row, at
various levels. In our employee example, it will return the manager of an
employee, along with the managers of those managers and so on until it
reaches the top-level manager. The list returned is delimited by a vertical bar.

The first parameter is the name of the column containing the unique identifier
for the current row, while the second parameter contains the name of the
column containing the unique identifier of the current row's parent. The two
columns must be of the same data type, which must be either text or integer.

Any values in the <Parent_ColumnName> column must exist in the <ID_ColumnName>
column. If there is no value in the <Parent_ColumnName> column, then PATH will
return the value in the <ID_ColumnName> column.

With our example, we'll add a new calculated column that gives us the path
for the employee and their managers using the following expression:

Employee Path = PATH ( Employee[EmployeeID], Employee[ParentEmployeeID] )

We can see the result of this in Figure 6-11:



Figure 6-11: The employee table with the employee hierarchy path added

If we now look at the PATHCONTAINS function, we can see how it can be used to
check for a value in the result returned by the PATH function. The syntax for the
PATHCONTAINS function is as follows:

PATHCONTAINS ( <Path>, <Item> )

This checks the string created by the PATH function, given as the first parameter,
to see whether it contains the value given for the second parameter.

We'll create a new calculated column to check the path for the value of 202,
which is the employee ID for the IT manager. We can do this with the
following expression, which utilizes the Employee Path calculated column we
created previously:

IT Employees = PATHCONTAINS ( Employee[Employee Path], "202" )



This will then return TRUE for all employees that are within the IT manager's
group, and FALSE for all other records.

The PATHLENGTH function returns the number of items in the list returned by the
PATH function. The syntax for this function is as follows:

PATHLENGTH ( <Path> )

We can create another calculated column to give the path length for a given
row using the following expression. Again, we will make use of the Employee
Path calculated column that we created earlier. The result of adding this
column to our Employee table can be seen in Figure 6-12:

Figure 6-12: The employee table with the employee hierarchy path length added

As we can see, this now returns the number of parents for a given row, but it
also includes the row itself. So, where an employee record doesn't have a
parent employee ID, it returns just one for the employee itself.



The PATHITEM and
PATHITEMREVERSE functions
We can start to normalize the parent-child hierarchy in our Employee table by
using the PATHITEM and PATHITEMREVERSE functions. These functions allow us to
fetch an ID from the specified position of the delimited string returned by PATH
function. The PATHITEM function uses the position going from the left of the
string, while the PATHITEMREVERSE goes from the right of the string.

The syntax for the PATHITEM function is as follows:

PATHITEM ( <Path>, <Position> [, <Type>] )

The optional Type parameter allows us to specify whether we want the function
to return the value as text or as an integer. If a 1 is passed, then the function
returns an integer. If a 0 is passed or the parameter is left blank, then the
function returns the result as text. This can be important if we want to use the
returned value with the LOOKUPVALUE function, which we will in a moment. The
syntax for the PATHITEMREVERSE function is the same as for the PATHITEM function.

Let's add another calculated column to our Employee table. This time, we'll
use the PATHITEM function to get the top-level manager for each employee, using
the following expression:

Level 1 Employee = PATHITEM ( Employee[Employee Path], 1, 1 )

By itself, this is not very useful. What would be more useful would be to use
this as a lookup to retrieve another value from the parent employee record.
For this, we can use the result of this calculated column as a parameter for the
LOOKUPVALUE function. The syntax for this function is as follows:

LOOKUPVALUE ( <Result_ColumnName>, <Search_ColumnName>, <Search_Value> [,

<Search_ColumnName>, <Search_Value> [, … ] ] [, <Alternate_Result>] )



We can use this function to revise the expression for our previous calculated
column so that it will return the name of the top-level manager:

Level 1 Employee =
LOOKUPVALUE (
    Employee[Name],
    Employee[EmployeeID], 
    PATHITEM ( Employee[Employee Path], 1, 1 )
)

We can repeat the preceding expression to create additional calculated
columns for employees on levels 2 to 4. This will then give us a table that
looks like the one in Figure 6-13:

Figure 6-13: The employee table showing different levels of hierarchy in separate  columns

The final step in normalizing our hierarchy is to use these calculated columns
to produce a hierarchy column on our Employee table, as shown in Figure 6-
14:



Figure 6-14: Using the separate hierarchy columns to produce a single hierarchy column

Although the Tabular data model does not support circular relationships
between tables, the functions in the DAX parent and child function group go a
long way toward helping you to build parent-child hierarchies into your data
model, when you have the parent and child columns available in a table.



Summary
In this chapter, we took a more in-depth look at the structure of DAX syntax,
including details around naming requirements. We learned more about
complex relationships including how to deal with relationships, between
tables that involve multiple columns and how to handle instances of tables
with multiple relationships. We also learned how to use DAX functions to
create virtual relationships.

We took our first look at the different groups of functions available in the
DAX language, including a detailed look at the aggregation group of
functions and the group of functions that help us to deal with parent and child
relationships in a table. We learned how these functions can help us to use
parent and child relationships to create a normalized parent-child hierarchy.

In the next chapter, we will continue our look at functions by learning more
about functions that return a table as a result of their evaluation.



Table Functions
In this chapter, we will be looking at the table group of DAX functions. In
particular, we'll focus on those functions that can be used to manipulate
tables. We'll list the functions in this group, along with a description of the
action that each performs.

We'll then look at a few of these functions in more detail, giving a breakdown
of the syntax, along with an explanation of how the function works in
practice. In addition, we'll also get hands-on with these functions, working
through a practical example of each, and helping you to understand how you
might use them in a real-world scenario.

The chapter is broken into the following sections:

Introducing table functions
Looking at table manipulation functions
Working with table functions



Introducing table functions
In Chapter 6, Progressive DAX Syntax and Functions, we looked at the two
types of functions found in the DAX language: scalar functions and table
functions. We saw that table functions are functions that, when evaluated,
return a table of data. Unlike scalar functions, which return a single value,
table functions cannot directly be used to define a measure or a calculated
column. Instead, they are used in conjunction with functions that accept a
table expression as one of their parameters.

DAX table functions can be used for the following purposes:

In a DAX expression that is used to define a calculated table (this
excludes Excel Power Pivot, which currently does not support
calculated tables).
In the definition of a DAX function, where the function accepts a table
expression as a parameter.
To query a tabular data model using Excel or SQL Server
Management Studio (SSMS), or using tools such as DAX Studio,
which can execute DAX queries using the EVALUATE statement.

Perhaps the most commonly used table functions in DAX are the FILTER and
ALL functions. However, we will not be looking at these in this chapter.
Instead, we will look at them in more detail when we come to filter functions
in Chapter 9, Filter Functions. For this chapter, we'll focus on some other
commonly used table functions, including those functions that can be used to
manipulate tables.



Creating a DAX calculated table
We originally looked at calculated tables back in Chapter 3, Building Data
Models, in the section entitled Adding a calculated table. In that section, we went
through some practical examples of adding calculated tables to the data model we
were building. When defining a calculated table, you will need to use a table
function in much the same way that you need to use scalar functions when defining a
measure or a calculated column.

In this example, we will create a calculated table in Power BI Desktop using the
ADDCOLUMNS and SUMMARIZE functions. The table will consist of sales grouped by the
CalendarQuarter and CalendarYear columns.

To create a calculated table from Power BI Desktop, proceed as follows:

1. Switch to the Report or Data view.
2. From the Calculations section of the Modeling ribbon, select New Table, as

shown in Figure 7-1. This will bring up the DAX editor, where you can enter
the expression that defines the new table:

Figure 7-1: Creating a new calculated table in Power BI Desktop



3. Enter the following DAX expression into the DAX editor, and press Return to
create a calculated table called Sales by Quarter and Year:

Sales by Quarter and Year =
SUMMARIZE (
    'Date',
    'Date'[CalendarYear],
     'Date'[CalendarQuarter]
)

The resulting table should look like the one shown in Figure 7-2:

Figure 7-2: The new table showing year and quarter

As you can see, the SUMMARIZE function takes the table given in the first parameter and
groups it by the distinct combination of the columns given in the second and third
parameters. In this case, it is grouping by the CalendarYear and
CalendarQuarter columns.



Using a table expression as a table
function parameter
As it is, our new table is not all that useful. However, we can fix this by
adding another column to our table definition. To do that, we use the SUMMARIZE
table expression as a parameter to the ADDCOLUMNS function.

Amend the definition for the new table using the following DAX expression:

Sales by Quarter and Year =
ADDCOLUMNS (
    SUMMARIZE (
        'Date',
        'Date'[CalendarYear],
        'Date'[CalendarQuarter]
    ),
    "Sales", CALCULATE ( SUM ( Sales[Sales Amount] ) )
)

The result of the revised table should look like what's shown shown in
Figure 7-3. Our table now has sales summarized by quarter and year, for the
quarters where sales were made:



Figure 7-3: The new table showing the sum of sales amount by year and quarter

The ADDCOLUMNS function is another table function. It adds a column to the result
of the table passed in as the first parameter (in this case, the result of our
SUMMARIZE function). The second parameter is the name of the column we are
adding, and the third is the definition for creating it.

In this case, we are using the DAX expression SUM ( Sales[Sales Amount] ) to
define the new column. However, as the ADDCOLUMNS function works with a row
context and the same expression within the SUMMARIZE function works within a
filter context, the SUM function must be wrapped with the CALCULATE function to
force context transition.



Querying your data model using
table functions
The third use for table functions is to query data in your data model. You can
do this from within Excel Power Pivot, or through tools such as SSMS or
DAX Studio. In this section, we'll look at examples of using all three tools.

A DAX query consists of the EVALUATE statement, followed by a table
expression. This table expression can simply be a table name, or it can be a
more complex example, such as the one we used in the previous section. The
result of executing the EVALUATE statement is returned as a table.

Let's start by looking at how to query data in a data model using Excel.
Proceed as follows:

1. Open the Excel workbook that we created in Chapter 4, Working with DAX
in Power BI, Excel, and SSAS, as part of our look at creating data
models in Excel. If you don't have that available, revisit the section in Cha
pter 3, Building Data Models, entitled Working with DAX in Excel
Power Pivot, to see how to create a Power Pivot data model with Excel.

2. With a blank worksheet, click on the Existing Connections icon in the Get
External Data section of the Data ribbon.

3. From the Existing Connections dialog, select the Tables tab to see a list
of tables in the data model, as shown in Figure 7-4:



Figure 7-4: Viewing a list of available tables in Excel

4. Select the Product table from the list and click on the Open button.
5. On the Import Data dialog, select Table and click on the OK button to

load the table onto the worksheet, as shown in Figure 7-5:

Figure 7-5: The Import Data dialog in Excel

6. With the Product table loaded onto the worksheet, right-click on a cell in
the table and select Table and then Edit DAX... from the context menus,
as shown in Figure 7-6:



Figure 7-6: Opening the Edit DAX dialog from the table context menu

7. In the Edit DAX dialog that now appears, change the Command Type
from Table to DAX.



8. We can now enter a query in the Expression box. We'll start with
the EVALUATE Sales expression, as shown in Figure 7-7:

Figure 7-7: The Edit DAX dialog

9. This will result in the Product table, which was displayed on the
worksheet, being replaced with a copy of the Sales table, as shown in
Figure 7-8:



Figure 7-8: A copy of the Sales table replaces the Product table

10. Next, repeat steps 6 to 8, but this time, we'll use a more complex query.
Enter the following DAX expression into the Expression box on the
DAX editor screen:

EVALUATE
ADDCOLUMNS (
    SUMMARIZE (
        'Date',
        'Date'[Calendar Year],
        'Date'[Calendar Year Quarter]
 ),
    "Sales", CALCULATE ( SUM(Sales[Sale Amount] ) )
)
ORDER BY
    'Date'[Calendar Year] DESC,
    'Date'[Calendar Year Quarter] DESC

11. This will return a table that is a summarized version of the Date table
grouped by Calendar Year and Calendar Year Quarter, and then show the
sum of sales made during the year and quarter. This is very similar to the
example we looked at with Power BI Desktop in the previous section, as
can be seen in Figure 7-9:



Figure 7-9: The sum of sales grouped by calendar year quarter and calendar year

Next, we will look at querying data using SSMS. To do this, you will need to
have SQL Server 2012 (or later) installed, with a Tabular instance of SQL
Server Analysis Service (SSAS) running. To get started, follow these steps:



1. Open SSMS and connect to the Tabular instance.
2. Right-click on the database name in Object Explorer, then click on New

Query, followed by DAX.
3. This will open a DAX editor window, as shown in Figure 7-10, where

you can enter a DAX table expression against the EVALUATE statement, much
like we did with Excel:

Figure 7-10: The DAX editor in SQL Server M anagement Studio (SSM S)

Finally, we will look at querying data using a third-party tool called DAX
Studio. This is a very popular third-party client tool, produced by the DAX



experts at SQLBI.com. It can execute DAX queries against data models in the
following packages:

Excel Power Pivot
Power BI Desktop
SSAS Tabular
Azure Analysis Services

To help connect with an Excel Power Pivot data model, it also includes an
add-in for Excel that will need to be enabled first.

You can download a copy of DAX Studio by going to https://daxstudio.org and following
the instructions from there.

If we install a copy of DAX Studio and return to our Excel spreadsheet, we
can enable the Excel add-in, as follows:

1. Go to File, click on Options, and then click on Add-Ins.
2. In the Manage dialog, select COM Add-ins from the drop-down list, and

then click on Go.
3. This will bring up the COM Add-Ins dialog, shown in Figure 7-11:

Figure 7-11: The COM  Add-ins dialog in Excel

4. Check the Dax Studio Excel Add-in box and click on OK.
5. With DAX Studio enabled, you will have a new icon available on the

Add-ins ribbon. Click on the icon to launch DAX Studio.
6. From the Connect dialog, accept the default option of PowerPivot

Model and click the Connect button, as shown in Figure 7-12:

http://sqlbi.com/
https://daxstudio.org/


Figure 7-12: Connecting DAX Studio to Excel Power Pivot 

7. We then get views of metadata, functions, and Dynamic Management
Views (DMVs), along with a DAX editor pane and a results window, as
can be seen in Figure 7-13. Here, we have run the same DAX expression
as we did when we used Excel to query the data. However, using DAX
Studio gives a much better user experience:

Figure 7-13: DAX Studio



In order to query data in a Power BI Desktop data model, you will need to
have the Power BI file loaded in Power BI Desktop first, by doing the
following:

1. Either launch DAX Studio or click on the Connect icon in the Connection
section of the Home ribbon.

2. On the Connect dialog, select the option of PBI / SSDT Model and click
the Connect button, as shown in Figure 7-14:

Figure 7-14: Connecting DAX Studio to Power BI Desktop

3. As with the Excel Power Pivot data model, we get views of metadata,
functions, and DMVs, but this time for our Power BI data model. We also
get a DAX editor pane and a results window, which we can use to query
data in our data model using DAX expressions.

Finally, you can also query data in an SSAS Tabular data model using DAX
Studio. To do this, you will need to know the name of the SSAS server where
your data model is located, proceeding as follows:

1. If it is not already loaded, launch DAX Studio. Otherwise, click on the
Connect icon in the Connection section of the Home ribbon.

2. From the Connect dialog, select the option of PBI / SSDT Model and
click the Connect button, as shown in Figure 7-15:



Figure 7-15: Connecting DAX Studio to SSAS Tabular

3. DAX Studio will then connect to your SSAS Tabular data model, again
giving you views of the metadata, functions, and DMVs behind the data
model.

Using DAX Studio to query your data brings other advantages along with ease
of use. As well as outputting the results of a DAX query to the results pane,
you can output the results into a text file. You can also export data from the
tables in your data model to text files. Other advantages include being able to
load Power BI performance data to analyze performance, and the ability to
format your DAX query, following some of the rules we looked at back in Chap
ter 2, Using DAX Variables and Formatting.



Looking at table manipulation
functions
In Chapter 6, Progressive DAX Syntax and Functions, we looked at the
different groups of functions that are available in the DAX language. As we
saw, individual DAX functions can be grouped depending on the
functionality they provide. However, functions from across these groups can
also belong to another type of group: table manipulation functions.



Table manipulation functions
reference
The following is a list of the DAX functions that can be used to manipulate
tables in your data model, returning the result as another table:

ADDCOLUMNS: Takes the specified table and returns a table with additional
columns, as defined by a given DAX expression and with a given name.
CROSSJOIN: Returns a table that contains the Cartesian product of rows
from all the tables given as parameters.
DATATABLE: Returns a table that has been defined and populated by the
parameters passed into the function.
DETAILROWS: Takes the measure passed in as a parameter and returns a
table that is obtained by evaluating the Detail Rows Expression of that
measure.
DISTINCT: Returns a table that contains the distinct values of a single
column passed in as a parameter, or the distinct combination of
columns, when a table expression is passed in as the parameter.
EXCEPT: Takes two tables as parameters and returns the rows from the
table passed in as the first parameter that are not present in the table
passed in as the second parameter.
FILTER: Takes a column name and returns a table of the filter values
applied directly to that column.
GENERATE: For each row in the table passed as the first parameter, the
table expression passed in as the second parameter will be evaluated,
and the cross-join of the first table with these results is returned as the
result.
GENERATEALL: For each row in the table passed as the first parameter, the
table expression passed in as the second parameter will be evaluated,
and the cross-join of the first table with these results is returned as the
result. Includes rows where the second table expression is empty.
GENERATESERIES: Returns a table with one column that is populated with
sequential values, starting from the values passed in as the first



parameter, to the values passed in as the second parameter. May also
increment by the value passed in as the optional third parameter.
GROUPBY: Returns a table summarizing the table in the first parameter,
grouped by the columns specified in the parameters.
INTERSECT: Takes two tables as parameters and returns the rows from the
table that is passed in as the first parameter that are present in the table
passed in as the second parameter.
NATURALINNERJOIN: Takes two tables as parameters and joins the table
passed in as the first parameter (the left table) with the table passed in
as the second parameter (the right table) using an inner join. Returns a
table that includes all the columns from both tables and only the rows
where the values in both tables match.
NATURALLEFTOUTERJOIN: Takes two tables as parameters and joins the table
passed in as the first parameter (the left table) with the table passed in
as the second parameter (the right table) using a left outer join. Returns
a table that includes all the columns from both tables and all the rows
from the left table with data from the right table, where the values in
both tables match.
ROW: Returns a single-row table with columns that are defined by DAX
expressions, passed in as parameters.
SELECTEDCOLUMNS: Takes the specified table and returns a table with
additional columns, as defined by a given DAX expression and with a
given name. Like the ADDCOLUMNS function, but starts with an empty table.
SUBSTITUTEWITHINDEX: Returns a table that is the semi-join of the two tables
passed in as parameters. The tables are joined using common columns
that are replaced with a single zero-based index column. The index is a
reference to rows of the right join table, sorted in the specified order.
SUMMARIZE: Returns a table summarizing the table in the first parameter,
grouped by the columns specified in the parameters.
SUMMARIZECOLUMNS: Returns a summary table that includes combinations of
values, from the columns passed in as parameters, which are given over
the set of specified groups.
TOPN: Returns a table giving the top number of rows, based on the number
and table passed in as the first and second parameters, sorted by the
expression given as the third parameter, and sorted in the order given as
the fourth parameter.



TOPNSKIP: Like the TOPN function, but skips the specified number of rows
first, before retrieving the top number of rows.
TREATAS: Takes the result of a table expression passed in as the first
parameter and applies them as filters to columns from an unrelated
table.
UNION: Returns a table that is the union of all the tables passed in as
parameters, where the columns match.
VALUES: Returns a table that contains the distinct values of a single column
passed in as a parameter, or the combination of columns (including
duplicates), when a table expression is passed in as the parameter. Will
include an additional blank row if the table has a one-to-many
relationship where there is a violation of referential integrity.

All the functions in this group will enable you to manipulate tables in your
data model in some way and return the result as another table. The resulting
table can then be used as the parameter to another function, or to create a new
calculated table in your data model. Like other table functions, these table
manipulation functions can also be used to query data in your data model.

Let's finish off this section by looking at some of the table manipulation
functions in more detail, starting with the CROSSJOIN function.



The CROSSJOIN function
The CROSSJOIN function returns a table containing the Cartesian product of all
the rows from all the tables that are passed to the function as parameters. The
resulting table will contain all the columns from the tables passed as
parameters.

The syntax of the CROSSJOIN function is as follows:

CROSSJOIN ( <Table> , <Table> [, <Table> ]… )

You can pass two or more tables (or table expressions) to the CROSSJOIN
function.

The names of the columns from the tables passed in as the parameters to the
function must all be different. The function will return an error if there are
two columns with the same name in the tables that are specified.

In the following example, we will apply the CROSSJOIN function to the Product
Category and Currency tables. Query the data using the following DAX
expression:

EVALUATE
CROSSJOIN ( 'Product Category', 'Currency' )

The screenshot in Figure 7-16 shows an extract of the resulting table:



Figure 7-16: Table showing the output of the CROSSJOIN function using the Product Category and Currency tables

As you can see, the table contains all the rows from the Product Category
table, and for every row in that table, it returns all the rows from the
Currency table. In other words, the number of rows in the resulting table will
be the number of rows in the Product Category table, multiplied by the
number of rows in the Currency table.



The DATATABLE function
The DATATABLE function provides a way to define an inline set of data values
and can be used to create static tables in your data model.

The syntax of the DATATABLE function is as follows:

DATATABLE ( <name>, <type> [, <name>, <type> ]… ,{{ <data> } [, { <data> }]… } )

The <name> is the name given to the column, and must be a string and not
the result of an expression.
The <type> is the data type for the column, and must be one of the
following values:

BOOLEAN

CURRENCY

DATETIME

DOUBLE

INTEGER

STRING

Finally, you provide the data that is being assigned to the column. Here, you
provide a set of rows, embedded between a pair of curly brackets. For each
row, you provide a list of values, embedded between another pair of curly
brackets. You cannot use expressions for these values; only constant values
are accepted.

To help make this clearer, let's look at the following example of the DATATABLE
being used to define a calculated table, which contains different age ranges:

Age Ranges =
DATATABLE (
    "Age Range", STRING,
    "Min Age", INTEGER,
    "Max Age", INTEGER,
    {
        { "Under 18", 0, 17 },
        { "18 to 24", 18, 24 },



        { "25 to 34", 25, 34 },
        { "35 to 44", 35, 44 },
        { "45 to 54", 45, 54 },
        { "55 to 64", 55, 64 },
        { "65 Plus", 65, 1000 }
    }
)

The screenshot in Figure 7-17 shows the result of our new calculated table
after it has been created within a Power BI report:

Figure 7-17: Calculated table created using the DATATABLE function

Using the DATATABLE function is a great way to create static tables as it makes it
easy to see the table definition, along with the data it contains. It also makes
it easier to make changes to both the definition and the contents of the table,
when required.



The EXCEPT, INTERSECT, and
UNION functions
Both the EXCEPT and INTERSECT functions require two tables to be passed in as
parameters, and both work by carrying out a comparison of values in the two
tables. The EXCEPT function returns rows from the table passed in as the first
parameter that are not present in the table passed in as the second parameter.

The syntax of the EXCEPT function is as follows:

EXCEPT ( <Table1> , <Table2> )

In the following example, we have two tables for – Color Table 1 and Color
Table 2 – each containing a list of colors. Table 7-1 shows the colors found
in each of the tables:

 Color Table 1 Color Table 2

Black Blue

Blue Green

Brown Gold

Green Orange

Grey Red

Lime Violet

Magenta White

Orange Yellow

Pink

Purple



Red

Teal

Turquoise

White

Yellow
Table 7-1: Colors in each of the two tables

We now query our data using these tables with the EXCEPT function using the
following DAX expression:

EXCEPT ( 'Color Table 1', 'Color Table 2' )

We get the following result in return:

 Black
 Brown
 Grey
 Lime
 Magenta
 Pink
 Purple
 Teal
 Turquoise

The INTERSECT function returns rows from the table passed in as the first
parameter that are also present in the table passed in as the second
parameter.

The syntax of the INTERSECT function is as follows:

INTERSECT ( <Table1> , <Table2> )

We now query our data using the same tables with the INTERSECT function using
the following DAX expression:

EXCEPT ( 'Color Table 1', 'Color Table 2' )

We get the following result in return:



Blue
Green
Orange
Red
White
Yellow

Finally, the UNION function will join the values from the tables passed in as
parameters into a single table. If the tables have duplicate values, then these
will also be duplicated in the resulting table. The function requires at least
two tables to be passed, but it can accept more.

The syntax of the UNION function is as follows:

UNION ( <Table1> , <Table2> [, <Table> ]… )

We now query our data using the same tables with the UNION function using the
following DAX expression:

UNION ( 'Color Table 1', 'Color Table 2' )

We get the following result in return:

Black
Blue
Brown
Green
Grey
Lime
Magenta
Orange
Pink
Purple
Red
Teal
Turquoise
White
Yellow
Blue
Green
Gold
Orange
Red
Violet
White
Yellow



As you can see, this list duplicates colors that appear in both tables. We can
remove duplicates by wrapping our expression using another table
manipulation function.

The DISTINCT function returns a table that contains the distinct values of the
table expression being passed. We can amend the expression we used
previously, so that it becomes the table expression being passed, as follows:

DISTINCT ( UNION ( 'Color Table 1', 'Color Table 2' ) )

If we query our data again, using the new expression, we get the following
result:

Black
Blue
Brown
Green
Grey
Lime
Magenta
Orange
Pink
Purple
Red
Teal
Turquoise
White
Yellow
Gold
Violet

This time, the duplicate values are removed from the resulting table.



The GENERATESERIES function
The final table manipulation function we're going to look at in this section is
the GENERATESERIES function. The GENERATESERIES function will return a table with
one column, which is populated with sequential values, starting from the
value passed in as the first parameter to the value passed in as the second
parameter. You can also, optionally, specify an incremental value with a third
parameter.

The syntax of the GENERATESERIES function is as follows:

GENERATESERIES ( <StartValue>, <EndValue> [, <IncrementValue> ] )

We use the following expression to create a new calculated table:

Generated Values = GENERATESERIES ( -5, 10 )

We get a table that contains the following values:

-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

We now amend the expression to include an incremental value, as follows:

Generated Values = GENERATESERIES ( -5, 10, 2 )

We get a table that contains the following values:

-5, -3, -1, 1, 3, 5, 7, 9

You will notice that the sequence stops at the last value that is less than or
equal to the end value given for the sequence.

If the specified end value is less than the start value of the sequence, then the
GENERATESERIES function will return an empty table. If you are using an
incremental value, then it must be a positive value.



Working with table functions
In the previous section, we focused on those table functions that can be used
to manipulate tables. Many of the other table functions fall into the date, time,
and time intelligence functions, which we will look at in Chapter 8, Date,
Time, and Time Intelligence Functions. The filter functions group also
contains a number of table functions, and we'll cover those in Chapter 9, Filter
Functions.

For the remainder of this chapter, we'll look at some functions that don't fall
into these groups, and where table expressions can be used as parameters.
Most of these functions fall into one of the following two categories:

Functions that will iterate over the rows returned by the table
expression given as a parameter, evaluating a DAX expression for each
row of the table.
Functions that will look for a specified value, in one or more columns
of the table expression given as a parameter.

The following is a list of these functions, sorted by their functions groups:

Aggregation Functions:
AVERAGEX: Evaluates a DAX expression for each row of a table and
calculates the average of the results.
COUNTAX: Evaluates a DAX expression for each row of a table and
counts the number of values that result.
COUNTROWS: Counts the number of rows in a table.
COUNTX: Evaluates a DAX expression for each row of a table and
counts the number of values that result.
MAXX: Evaluates a DAX expression for each row of a table
and returns the largest value.
MINX: Evaluates a DAX expression for each row of a table
and returns the smallest value.
PRODUCTX: Evaluates a DAX expression for each row of a table
and returns the product.



SUMX: Evaluates a DAX expression for each row of a table
and returns the sum of the values.

Information Functions:
CONTAINS: If there exists at least one row where all columns have
specified values, returns TRUE.
CONTAINSROW: If there exists at least one row where all columns have
specified values, returns TRUE.
ISCROSSFILTERED: When the specified table or column is cross-filtered,
returns TRUE.
ISEMPTY: If the specified table or table expression is empty, returns
TRUE.
ISFILTERED: If there are direct filters on the specified table columns,
returns TRUE.

Relationship Functions:
RELATEDTABLE: Will return the related tables, filtered to include only the
related rows.

Text Functions:
CONCATENATEX: Evaluates a DAX expression for each row of a table,
returning the values concatenated in a single string, separated by the
specified delimiter.



The COUNTROWS function
For our first example, we'll look at one of the functions from the aggregation
group. The COUNTROWS function simply counts the number of rows returned by a
table expression.

The syntax of the COUNTROWS function is as follows:

COUNTROWS ( <Table> )

To demonstrate this function, we can create a new measure to count the rows
of a table expression that uses the GENERATESERIES function, to create a table
containing rows with the values 1 to 100.

We use the following DAX expression to create our new measure:

Count Rows Measure =
COUNTROWS (
    GENERATESERIES (
        1,
        100
    )
)

We should get the result shown in Figure 7-18 when we place the measure on
a Power BI report using a card visual:



Figure 7-18: The result of the Count Rows M easure output to a card visual in Power BI Desktop

A more likely scenario for using the COUNTROWS function is to count the number
of rows returned by a table expression that uses one of the filter functions
we'll be looking at in Chapter 9, Filter Functions.



The PRODUCTX function
The PRODUCTX function is another function from the aggregation group. It returns
the product of an expression that is evaluated for each row of the table
expression passed as the first parameter.

The syntax of the PRODUCTX function is as follows:

PRODUCTX ( <Table>, <Expression> )

For this example, we'll use the DATATABLE function to create two new tables.
One will contain the current salary of some employees, while the second will
contain details of salary increases for the next 3 years. Proceed as follows:

1. To create the first table, we'll use the following DAX expression:

Employee Salary =
DATATABLE (
    "EmployeeID", INTEGER,
    "Salary", CURRENCY,
    {
        { "100", "150000" },
        { "200", "80000" },
        { "201", "55000" },
        { "202", "55000" },
        { "300", "45000" },
        { "301", "40000" },
        { "302", "40000" },
        { "303", "40000" },
        { "304", "50000" },
        { "305", "50000" },
        { "306", "50000" },
        { "400", "25000" }
    }
)

2. Next, we'll create a table detailing the annual salary increases for the
next 3 years using the following DAX expression:

Salary Increase =
DATATABLE (
    "Year", STRING,
    "Increase", DOUBLE,
    {



        { "2019", "1.03" },
        { "2020", "1.02" },
        { "2021", "1.02" }
    }
)

3. Now, we can use the PRODUCTX function to create a calculated column on
the Employee Salary table that we created with the first expression. Use
the following DAX expression to create this:

Increased Salary =
[Salary]
    * PRODUCTX (
        'Salary Increase',
        [Increase]
    )

The resulting Employee Salary table should look like the one shown in
Figure 7-19:

Figure 7-19: The result of the Employee Salary table

In this case, what the PRODUCTX function is doing is multiplying the values in the
Increase column of the Salary Increase table. This is then used in the
definition of the Increased Salary column of the Employee Salary table by
multiplying the result of the PRODUCTX function by the value of the Salary
column. So, for the first row, the value of the Increased Salary column is
calculated as follows:

£150,000 * (1.03 * 1.02 * 1.02) = £160,741.80



As you can see, the PRODUCTX function is a great way of calculating future
values.



The CONTAINS function
The CONTAINS function will return TRUE if there is a row where all of the
specified columns contain the specified values.

The syntax of the CONTAINS function is as follows:

CONTAINS ( <Table>, <ColumnName>, <Value> [, <ColumnName>, <Value> [, … ] ] )

In this example, we'll use the INTERSECT function to find the list of colors that
appear in our two-color tables. We'll then use the result of this expression
with the CONTAINS function to create a measure that checks whether this list
contains the color Red, as follows:

Color Check =
CONTAINS (
    INTERSECT (
        'Color Table 1',
        'Color Table 2'
    ),
    [Color],
    "Red"
)

In this case, the measure would return TRUE as both tables contain the color
Red. However, if the value was changed to Pink, the measure would return
FALSE, as the color Pink only appears in Color Table 1.



The CONCATENATEX function
For our final example in this chapter, we're going to look at the CONCATENATEX
function. This function takes a table expression for the first parameter. It then
iterates over the rows in this table and evaluates the expression passed in
with the second parameter. The results of the expressions are then
concatenated using the delimiter specified with the third parameter.

The syntax of the CONCATENATEX function is as follows:

CONCATENATEX ( <Table>, <Expression> [, <Delimiter> ] )

In this example, we'll use the INTERSECT function to find the list of colors that
appear in our two color tables. We'll then use the result of this expression
with the CONCATENATEX function to create a new measure that we can use to
display these colors as a comma-separated list.

We can create the new measure using the following DAX expression:

Colors =
CONCATENATEX (
    INTERSECT (
        'Color Table 1',
        'Color Table 2'
    ),
    [Color],
    ","
)

We can then use that measure with a card visual in Power BI Desktop to
display the result, which should look like the one shown in Figure 7-20:



Figure 7-20: The result of the colors measure output to a card visual in Power BI Desktop

The CONCATENATEX function is a great way of displaying the result of a table
expression. For example, you could use it in conjunction with the VALUES table
function to display the current values of a filter or slicer as a dynamic title on
a report.



Summary
In this chapter, we looked at the DAX table functions. We looked at how they
can be used to create calculated tables and how they can be used as
parameters to functions that require a table expression for a parameter. We
learned how to use table functions with Excel, SSMS, and DAX Studio to
query data in our data model.

We then moved on to look at those table functions that are classed as table
manipulation functions, and how they can be used to manipulate data in our
data model. We looked in detail at the CROSSJOIN, DATATABLE, EXCEPT, INTERSECT,
UNION, and GENERATESERIES functions. 

Finally, we looked at some examples of working with table functions. In
particular, we looked at using table functions as parameters to other functions
and we worked through some examples of using the COUNTROWS, PRODUCTX, CONTAINS,
and CONCATENATEX functions.

In the next chapter, we will continue our look at functions by learning about
the date, time, and time intelligence functions that are available in the DAX
language.



Date, Time, and Time Intelligence
Functions
We'll start this chapter by looking at the group of DAX functions that deal
with date and time. Starting with a brief description of each of the functions
currently available in this group, we'll then turn our attention to some hands-
on examples.

In the second half of this chapter, we'll be working with the time intelligence
group of functions. Again, we'll start with a list of the functions in this group,
before moving on to look at how these functions work with a date table in
your data model to bring you new insights. We'll also work through some
examples of using these functions to aggregate and compare data over
different time periods.

This chapter will cover the following topics:

Introduction to date and time functions
Working with date and time functions
Looking at time intelligence functions
Making your data more intelligent over time



Introduction to date and time
functions
The DAX language contains a number of functions relating to date and time,
including a couple of functions that allow you to automatically create simple
date tables. Many of the remaining date and time functions give you the
ability to expand these automatically generated tables with additional
columns of date-related information. If you've worked with date and time
functions in Excel, then these are very similar, with the exception that DAX
date and time functions work with the datetime data type.

Almost all the data models you'll work with will involve some form of
calculation relating to date and time, and they'll usually contain at least one
date table. In fact, if you are working with a data model in Power BI Desktop
and you don't have your own date table, then, by default, it will automatically
create a hidden date table for every date field in the data model.

Time tables are less commonly found in data models. Where they are, they will have
a similar structure, with one row for every unit of time. That unit of time will depend
on the granularity of your time table, be it hour, minute, second, or lower. Generally,
you will have rows covering the time between midnight and 23:59:59.

Whenever you have dates in a data model that you want use for analysis, you
will need to have a related date table. Where you have multiple dates that
you want to analyze, you have the following choices:

Use a single date table where you have a single active relationship and
multiple inactive relationships. You will then need to use the
USERELATIONSHIP function to indicate which relationship to use.
Use multiple date tables, each related to its own date column.

In Chapter 3, Building Data Models, in the section titled It's a date, we
looked at building a custom date table using some of these date and time
functions. In that example, we started by building a simple table with the



CALENDAR function, and then expanded it by adding numerous calculated
columns. In this chapter, we're going to build a similar date table. However,
this time, we'll do it using a single DAX expression and use the ADDCOLUMNS
function to add the additional date-related columns.



Date and time function reference
The following list of DAX functions are found in the date and time function
group, along with a brief description of the functionality provided by each:

CALENDAR: Returns a table that contains a single column called 'Date',
which holds a set of contiguous dates. These dates range from a
specified start date to a specified end date, inclusively.
CALENDARAUTO: Returns a table that contains a single column called 'Date',
which holds a set of contiguous dates. The range for these dates is
calculated automatically based on the earliest date found in your data
model through to the latest.
DATE: Returns the specified date in datetime format.
DATEDIFF: Returns the number of units specified as the interval between
two specified dates.
DATEVALUE: Converts a date specified in text format into a date in datetime
format.
DAY: Returns an integer number between 1 and 31, representing the day of
the month of the specified date.
EDATE: Returns a date in datetime format, which is the date that is the
specified number of months before or after the given start date.
EOMONTH: Returns a date in datetime format, which is the last day of the
month for the specified number of months, before or after the given start
date.
HOUR: Returns an integer number between 0 and 23, representing the hour
of the specified date/time.
MINUTE: Returns an integer number between 0 and 59, representing the
minute of the specified date/time.
MONTH: Returns an integer number between 1 and 12, representing the
month of the specified date.
NOW: Returns the current date and time in datetime format.
SECOND: Returns an integer number between 0 and 59, representing the
second of the specified date/time.
TIME: Converts the specified hours, minutes, and seconds, given as
numbers, to a time in datetime format.



TIMEVALUE: Converts a specified time given in text format into a time in
datetime format.
TODAY: Returns the current date in datetime format.
UTCNOW: Returns the current Coordinated Universal Time (UTC) date
and time in datetime format.
UTCTODAY: Returns the current UTC date in datetime format.
WEEKDAY: Returns an integer number between 1 and 7, representing the day
of the week of the specified date. Gives you the option to specify
whether to use Sunday or Monday as the first day of the week.
WEEKNUM: Returns an integer number representing the week number of the
year for the specified date. Gives you the option to specify whether to
use Sunday or Monday as the first day of the week.
YEAR: Returns a four-digit integer number between 1900 and 9999
representing the year for the specified date.
YEARFRAC: Returns the fraction of a year based on whole days between a
specified start and end date.

Now, let's have a look at the date and time functions in the next section.



Working with date and time
functions
In this section, we're going to look at some of the date and time functions in
more detail by using them with some hands-on examples. We'll start by
looking at a DAX expression to build a date table.

As we'll see in the Looking at time intelligence functions section of this chapter on
time intelligence functions, we need at least one table in our data model that
contains all the days for the years being analyzed for those functions to work
correctly.

Unlike the date table we built in Chapter 3, Building Data Models where we
built the table in sections using calculated columns, we'll build this date table
with a single DAX expression.



Building a date table
For this example, we will be building a date table using Power BI Desktop.
We'll start by creating a calculated table. From Power BI Desktop, do the
following:

1. Switch to the Report or Data view.
2. From the Calculations section of the Modeling ribbon, select Create

New Table. This will bring up the DAX editor where we can name the
table and add the DAX expression to define it. In the DAX editor, enter
the following expression to create the new date table:

Date Table =
VAR StartYear = 2005
VAR EndYear = 2020
VAR CalendarDates =
    CALENDAR ( DATE ( StartYear, 1, 1 ), DATE ( EndYear, 12, 31 ) )
RETURN
    ADDCOLUMNS (
        CalendarDates,
        "Year", YEAR ( [Date] ),
        "Quarter Name", "Q" & TRUNC ( ( MONTH ( [Date] ) - 1 ) /  
          3 ) + 1,
        "Quarter Number", TRUNC ( ( MONTH ( [Date] ) - 1 ) / 3 ) +  
          1,
        "Month Name", FORMAT ( [Date], "mmmm" ),
        "Month Number", MONTH ( [Date] ),
        "Week Name", "Week " & FORMAT ( WEEKNUM ( [Date] ), "00"    
          ),
        "Week Number", WEEKNUM ( [Date] ),
        "Day Name", FORMAT ( [Date], "dddd" ),
        "Day Number", WEEKDAY ( [Date] )
    )

3. This will create a new date table with a date column called Date. Check
that this column is correctly formatted as a date.

4. Finally, mark the new table as a date table. To do this, right-click on the
new date table in the Fields pane and select Mark as date table. This
will bring up the Make as date table dialog. In the drop-
down Date column, select Date and click OK.



In this example, we have used the CALENDAR function with a start and end date.
We could have just as easily used the CALENDARAUTO function to automatically
detect the earliest and latest dates in our data model. However, the CALENDAR
function gives us greater control over the date range of the table. Let's look at
these two functions in more detail.



The CALENDAR and
CALENDARAUTO functions
The CALENDAR function will return a table that contains a single column called
Date, which holds a set of contiguous dates. These dates range from a
specified start date to a specified end date, inclusively.

The syntax of the CALENDAR function is as follows:

CALENDAR ( <StartDate> , <EndDate> )

To ensure that the DAX time intelligence functions work correctly, you
should always include an entire year in a date table.

In the expression we used to create our date table in the previous example,
we effectively used the following DAX to return a table with dates between
January 1, 2005 and December 31, 2020:

CALENDAR (
    DATE ( 2005, 1, 1 ),
    DATE ( 2020, 12, 31 )
)

The CALENDARAUTO function also returns a table with a set of contiguous
dates and a single column called Date. However, the start and end dates
for the date range are calculated automatically based on the data in your
data model.
The syntax of the CALENDARAUTO function is CALENDARAUTO (
[<FiscalYearEndMonth>] ).
The function takes an optional parameter, which is an integer between 1
to 12 that represents the end month of the fiscal year. By default, the
fiscal year ends in month 12 (December).
While the CALENDARAUTO function can be useful for populating a date table,
it has a major drawback. If your data model contains dates that you are



not using for analysis, such as date of birth, then it will also pick these
up. This will potentially give a much wider date range than you want.



The DATEDIFF function
The DATEDIFF function returns the amount of time between the specified start and
end dates, with a specified time interval of seconds, minutes, hours, days,
weeks, months, quarters, or years.

The syntax of the DATEDIFF function is as follows:

DATEDIFF ( <Date1>, <Date2>, <Interval> )

The <Date1> and <Date2> parameters are dates in datetime format that represent
the two dates that we want to measure the interval between. The interval is
specified with the third parameter.

Let's create two measures to illustrate the function being used with day and
week as the intervals by using the following DAX expressions:

DATEDIFF Day Example =
DATEDIFF (
    DATE ( 2019, 1, 1 ),
    DATE ( 2020, 12, 31 ),
    DAY
)

DATEDIFF Week Example =
DATEDIFF (
    DATE ( 2019, 1, 1 ),
    DATE ( 2020, 12, 31 ),
    WEEK
)

If we now display these measures using a couple of card visuals with Power
BI, we get the results shown in Figure 8-1:



Figure 8-1: Using the DATEDIFF function with day and week intervals

In this example, for each of the measures, the end date is after the start date, so
the difference is returned as a positive figure. However, in instances where
the start date is after the end date, then the difference would be returned as a
negative number.



The EDATE function
The EDATE function returns the date that is the specified number of months
before or after the given start date.

The syntax of the EDATE function is as follows:

EDATE ( <StartDate>, <Months> )

The first parameter is a date in datetime or text format that represents the
start date. The second parameter represents the number of months before or
after the start date to return.

To illustrate this, create a new measure using the following DAX expression:

EDATE Example =
EDATE (
    DATE ( 2019, 1, 31 ),
    1
)

This then gives the result shown in Figure 8-2:

Figure 8-2: Using the  EDATE function



In cases like our example, where the day of the month of the specified start
date is past the last day of the corresponding month, then the last day of the
corresponding month is returned.



The EOMONTH function
The EOMONTH function is like the EDATE function except that it will return the last
date of the month where the specified number of months is before or after the
given start date.

The syntax of the EOMONTH function is as follows:

EOMONTH ( <StartDate>, <Months> )

The first parameter is a date in datetime or text format that represents the
start date. The second parameter represents the number of months before or
after the start date to return.

Again, let's illustrate this by creating a new measure using the following
DAX expression:

EOMONTH Example =
EOMONTH(
    DATE ( 2019, 12, 15 ),
    -2
)

This will then give the result shown in Figure 8-3:



Figure 8-3: Using the  EOMONTH function

Even though both the EDATE and EOMONTH functions return a date, they return it in
datetime format. If you only want the date, without the time, then you should
wrap the EDATE or EOMONTH function with the FORMAT function, and format the date
as required.



The YEARFRAC function
The last function in the date and time group that we're going look at is the
YEARFRAC function. This function returns the number of days between the
specified start and end dates as a year fraction.

The syntax of the YEARFRAC function is as follows:

YEARFRAC ( <StartDate>, <EndDate> [, <Basis>] )

The third optional parameter is an integer number between 0 and 4 and it
allows you to specify the type of day count basis to be used. The following
gives the meaning for each value:

0 – US (NASD) 30/360
1 – Actual/actual
2 – Actual/360
3 – Actual/365
4 – European 30/360

If the third parameter is omitted, the default of basis 0 will be used. In most
cases, if you are not sure which basis to use, you should use basis 1.

Where possible, you should use four-digit years to avoid unexpected results.
If the year is omitted, then the current year will be used.

Let's create an example measure using the following DAX expression:

YEARFRAC Example =
YEARFRAC (
    DATE ( 1968, 4, 1 ),
    DATE ( 2019, 10, 1 ),
    1
)

This will then give the result shown in Figure 8-4:



Figure 8-4: Using the YEARFRAC function

The YEARFRAC function is useful for financial and HR-related calculations,
where the calculation requires the portion of a whole year. In the previous
example, we created the measure using set dates, but these could just as
easily be dates coming from tables in our data model.

We worked with the date and time functions in this section. In the next
section, we'll move on toward the time intelligence functions.



Looking at time intelligence
functions
Now that we've spent some time working with date and time functions in
more detail, it's time to move on to looking at the time intelligence group of
DAX functions.

The DAX language contains a number of functions related to time
intelligence. This set of functions will enable you to get insight into your data
by making it easy to perform analysis over different time periods. For
example, you can get figures such as months, quarters, and year to date, or the
same period last year. Each of these functions belongs to one of three
categories:

Functions that return a single date
Functions that return a table of dates
Functions that evaluate expressions over a period of time

In order to be able to use any of these time intelligence functions, your data
model must contain at least one date table. This date table will also need to
conform to the following rules:

It must start on January 1 of the year of the earliest date being analyzed.
It must end on December 31 of the year of the latest date being analyzed.
It will need one record, and only one record, for each date.
The dates must be contiguous. There can be no missing dates between
the start and end dates for the range of dates covered by the date table.

As we have already seen, if you are using Power BI Desktop, then you have
two options available. You can either work with the hidden data tables that
are automatically created by default when you have dates in your data model,
or you can create your own custom date table. If you create a custom table,
then any hidden date tables will be removed from your data model.



It is recommended that you always create your own custom date table when working
with time intelligence functions as you will have greater control over it.

As you will see when we come to the examples of using these functions, we
will use some of them with the CALCULATE function. As such, you will need a
good understanding of how the CALCULATE function works to be able to
understand how a particular time intelligence function works. If you need a
reminder of how the CALCULATE function works, check out the section entitled
The CALCULATE function in Chapter 1, What is DAX?.



Time intelligence function reference
The following is a list of the DAX functions found in the time intelligence
group of functions, along with a brief description of the functionality
provided by each:

CLOSINGBALANCEMONTH, CLOSINGBALANCEQUARTER, and CLOSINGBALANCEYEAR evaluate a
given expression at the last date of the month/quarter/year for the
specified dates in the current context. They also take an optional
argument for a filter expression to apply to the current context. The
CLOSINGBALANCEYEAR function also allows you to specify a literal string with
a date that defines the year-end date.
DATEADD: Returns a table containing a column of dates, shifted either
forward or backward in time by the specified number of intervals from
the dates in the current context. Intervals can be specified as day, month,
quarter, or year.
DATESBETWEEN: Returns a table containing a column of dates that begin with
the specified start date and end with the specified end date.
DATESINPERIOD: Returns a table containing a column of dates that begin with
the specified start date and continues for the specified number of
intervals. Intervals can be specified as day, month, quarter, or year.
DATESMTD, DATESQTD, and DATESYTD: Returns a table containing a column of the
dates for the month/quarter/year to date in the current context.
ENDOFMONTH, ENDOFQUARTER, and ENDOFYEAR: Returns the last date of the
month/quarter/year in the current context for the specified column of
dates.
FIRSTDATE: Returns the first date in the current context for the specified
column of dates.
FIRSTNONBLANK: Returns the first value in the column, filtered by the current
context, where the expression is not blank.
LASTDATE: Returns the last date in the current context for the specified
column of dates.
LASTNONBLANK: Returns the last value in the column, filtered by the current
context, where the expression is not blank.



NEXTDAY, NEXTMONTH, NEXTQUARTER, and NEXTYEAR: Returns a table containing a
column of all dates from the next day/month/quarter/year, based on the
first date specified in the date column in the current context.
OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER, and OPENINGBALANCEYEAR: Evaluates
the expression at the first date of the month/quarter/year in the current
context.
PARALLELPERIOD: Returns a table that contains a column of dates that
represents a period parallel to the dates in the specified date column, in
the current context, with the dates shifted by a specified number of
intervals either forward in time or back in time. Intervals can be
specified as month, quarter, or year.
PREVIOUSDAY, PREVIOUSMONTH, PREVIOUSQUARTER, and PREVIOUSYEAR: Returns a table
that contains a column of all dates from the previous
day/month/quarter/year, based on the first date in the date column in the
current context.
SAMEPERIODLASTYEAR: Returns a table that contains a column of dates shifted
one year back in time from the dates in the specified date column in the
current context.
STARTOFMONTH, STARTOFQUARTER, and STARTOFYEAR: Returns the first date of the
month/quarter/year in the current context for the specified column of
dates.
TOTALMTD, TOTALQTD, and TOTALYTD: Evaluates the value of the expression for
the dates in the month/quarter/year to date in the current context.

All the functions in this group take dates as one of their parameters. The
dates passed to these functions can be any of the following:

A reference to a date/time column
A table expression that returns a single column of date/time values
A Boolean expression that defines a single-column table of date/time
values



Making your data more intelligent
over time
In this section, we're going to look at some of the time intelligence functions
in more detail by using them with some hands-on examples. As we mentioned
in the previous section, you must have at least one date table in your data
model for the functions in this group to work. If you don't have a date table in
your data model already, make sure you add one, as outlined in the previous
section on the date and time functions. This date table will also need to have
a relationship with the SalesDateKey column in the Sales table.



DAX functions that return a single
date
The first category of time intelligence functions that we are going to look at
are those that return a single value. In reality, they return a single row of a
single column table, so they can be used with any function that requires a
table as a parameter.

The functions in this category are as follows:

FIRSTDATE and LASTDATE
FIRSTNONBLANK and LASTNONBLANK
STARTOFMONTH and ENDOFMONTH
STARTOFQUARTER and ENDOFQUARTER
STARTOFYEAR and ENDOFYEAR

Let's look at the first of these functions to help us understand how the
functions in this category work.

The syntax of the FIRSTDATE function is as follows:

FIRSTDATE ( <Dates> )

The syntax of the LASTDATE functions is as follows:

LASTDATE ( <Dates> )

These functions have only one parameter, which is either the name of a
column containing dates or a one-column table containing dates. From these
dates, it will then return the first date in the current context.

The FIRSTNONBLANK and LASTNONBLANK functions work slightly differently to the
others in this group, in that they don't just work with date columns, but also
work with columns of any data type.



The syntax of the FIRSTNONBLANK function is as follows:

FIRSTNONBLANK ( <ColumnName>, <Expression> )

The syntax of the LASTNONBLANK function is as follows:

LASTNONBLANK ( <ColumnName>, <Expression> )

For the first parameter, we give it the name of the column that we want to
return the value from. For the second parameter, we need to supply an
expression that is to be evaluated for each value of the column passed in the
first parameter for non-blank values. Let's illustrate this with an example:

1. Create a new measure using the following DAX expression:

First Sales Date =
FIRSTNONBLANK (
    'Date Table'[Date],
    CALCULATE (
        SUM ( Sales[Sales Amount] )
    )
)

This will give the first date where the sales amount was not blank. On
its own, this is not very useful. However, if we add this to a table
visual, along with the product name, we get the date that each product
achieved its first sale. We can see this in Figure 8-5:



Figure 8-5: Showing the first date of sale for each product

2. We can expand on this to find the total sales amount for that first day's
sales by using the same expression as a filter with the CALCULATE function.
Create a new measure using the following expression:

First Sales Date Sales Amount =
CALCULATE (
    SUM ( sales[sales amount] ),
    FIRSTNONBLANK (
        'Date Table'[Date],
        CALCULATE (
            SUM ( Sales[Sales Amount] )
        )
    )
)

Here, we are using the fact that FIRSTNONBLANK returns a table, which can
then be used as a filter for the CALCULATE function.

The last functions we're going to look at in this category are the
STARTOFYEAR and ENDOFYEAR functions. These functions return the date of
the start of the year and the date of the end of the year, respectively.



The syntax of the STARTOFYEAR function is as follows:

STARTOFYEAR ( <Dates> [, <YearEndDate>] )

For the first parameter, you need to supply either the name of a
column containing dates or a one-column table containing dates. The
second, optional, parameter allows you to specify the end date of the
year, which may be different to the calendar year if you're working
with financial years, for example.

The YearEndDate parameter is a string literal of a date. This will be in the locale of the
client where a workbook was created, and the year part of the date will be ignored.
It is advisable to use the format day/month to ensure the correct interpretation.

3. For this example, create a measure using the following expression:

Financial Year Start Date =
STARTOFYEAR (
    Sales[SalesDateKey],
    "03/31"
)

In this example, we have included the optional parameter to specify an
alternative year-end date of March 31 for our financial year. When combined
with the date column of our date table in a table visual, we get the start date
of the financial year for each quarter, as can be seen in Figure 8-6:

Figure 8-6: Getting the start date of the financial year

The financial year start date for Q1 2007 is January 1, 2007 as this is the first
date that has sales in the Sales table.



The STARTOFMONTH, ENDOFMONTH, STARTOFQUARTER, and ENDOFQUARTER functions are very
similar to the STARTOFYEAR and ENDOFYEAR functions, with the exception that they
don't have an optional parameter for an alternative end date.



Comparing values over different
periods of time
Another category within the time intelligence group of functions are those that
return a table of dates. These functions are largely used as the filter
parameter, for the CALCULATE function and are used to create comparisons of
values over different time periods.

The functions in this category are as follows:

DATEADD, DATESBETWEEN, and DATESINPERIOD
DATESMTD, DATESQTD, and DATESYTD
NEXTDAY, NEXTMONTH, NEXTQUARTER, and NEXTYEAR
PARALLELPERIOD and SAMEPERIODLASTYEAR
PREVIOUSDAY, PREVIOUSMONTH, PREVIOUSQUARTER, and PREVIOUSYEAR

We'll begin our look at this category of time intelligence functions with the
DATEADD function. This function will take a set of dates and then move them by
the given number of the specified time interval.

The syntax of the DATEADD function is as follows:

DATEADD ( <Dates>, <NumberOfIntervals>, <Interval> )

The first parameter is either the name of a column containing dates or a one-
column table containing dates. The second parameter is the number of the
specified intervals that you want to move the dates by, and the third
parameter is the interval type. The interval type can be day, month, quarter,
or year. To demonstrate this, do the following:

1. Create a new measure using the following expression:

Sales Amount Last Month =
CALCULATE (
    SUM ( Sales[Sales Amount] ),



    DATEADD (
        'Date Table'[Date],
        -1,
        MONTH
    )
)

This takes our table of dates and returns a table with the date shifted
back by one month. The result from this is then used as the filter
parameter of the CALCULATE function, which evaluates the expression
that sums the Sales Amount column of the Sales table.

With this measure, we can compare the sales amount for a month with
the sales amount of the previous month, as can be seen in Figure 8-7:

Figure 8-7: Comparing the sales amount for a month with the sales amount of the previous month

This same result could also be obtained by using the PARALLELPERIOD
function. This function is very similar to the DATEADD function and the
syntax for it is as follows:

PARALLELPERIOD ( <Dates>, <NumberOfIntervals>, <Interval> )

2. To use this function instead, amend the previous measure by using the
following expression:



Sales Amount Last Month =
CALCULATE (
    SUM ( Sales[Sales Amount] ),
    PARALLELPERIOD (
        'Date Table'[Date],
        -1,
        MONTH
    )
)

There is a third way this result could be obtained, this time using the
PREVIOUSMONTH function. Unlike DATEADD, this function only has one
parameter, and the syntax for it is as follows:

PREVIOUSMONTH ( <Dates> )

3. To use this function instead, amend the previous measure using the
following expression:

Sales Amount Last Month =
CALCULATE (
    SUM ( Sales[Sales Amount] ),
    PREVIOUSMONTH ( 'Date Table'[Date] )
)

All the NEXT and PREVIOUS functions work in the same way as the PREVIOUSMONTH
function – they just move the date by different intervals.

The DATESMTD, DATESQTD, and DATESYTD functions all return a table containing a
column of the dates for the month, quarter, or year to date in the current
context. They all take one parameter, which is the name of the column
containing dates or a one-column table containing dates.

In the next part of this chapter, we'll look at the DATESYTD function being used as
a filter with the CALCULATE function to create a measure that returns the year-to-
date sales amount.



The opening and closing balance
functions
The last intelligence function that we're going to focus on is the
CLOSINGBALANCEMONTH function. This function belongs to the third category of time
intelligence functions that evaluate expressions over a period of time.

The CLOSINGBALANCEMONTH function evaluates an expression for the last date of the
month in the current context. The CLOSINGBALANCEQUARTER and CLOSINGBALANCEYEAR
functions work in the same way, except they evaluate an expression for the
last date of the quarter and year, respectively. The CLOSINGBALANCEYEAR function
also has an additional optional parameter that allows you to specify a
different year-end date (the default being December 31).

The syntax of the CLOSINGBALANCEMONTH function is  as follows:

CLOSINGBALANCEMONTH ( <Expression>, <Dates> [, <Filter>] )

The first parameter is the expression that is to be evaluated. This can be a
DAX expression or an existing measure. In our example, we are going to use
a measure called YTD Sales. This measure calculates a cumulative total of
sales to date for each year:

1. There are a couple of ways we can calculate this measure using other
functions from the time intelligence group. Firstly, we could use the
DATESYTD function with the CALCULATE function, as in the following example:

YTD Sales =
CALCULATE (
    SUM ( Sales[Sales Amount] ),
    DATESYTD ( 'Date Table'[Date] )
)

Alternatively, we could use a function from the category of functions
that evaluate expressions over a time period; the TOTALYTD function:



YTD Sales 2 =
TOTALYTD (
    SUM ( Sales[Sales Amount] ),
    'Date Table'[Date]
)

We can see the results of both measures in Figure 8-8, which shows
daily sales amounts, along with the results of both versions of our
year-to-date total sales measures:

Figure 8-8: Displaying both versions of the YTD sales measures

For the second parameter of the CLOSINGBALANCEMONTH function, we need
to give either the name of a column containing dates or a one-column
table containing dates. In our example, it will be the date field from
our date table.



Finally, we can specify an optional filter for the third parameter. In
this example, we're going to restrict the year-to-date sales figures to
just those for products in the Economy class.

2. We'll now create our example measure using the following DAX
expression:

EOM Sales Balance =
CLOSINGBALANCEMONTH (
    [YTD Sales],
    'Date Table'[Date],
    'Product'[Class] = "Economy"
)

Figure 8-9 shows the result of using this measure, splitting our year-
to-date sales amount by month, quarter, and then by year:

Figure 8-9: Using the CLOSINGBALANCEMONTH function

In this example, we used a running sales total over the course of a year. A
more typical example of using the CLOSINGBALANCE function would be where you



have a different total for each day; for example, stock levels or the balance of
a bank account.

The OPENINGBALANCE function is very similar to the CLOSINGBALANCE function except
that it evaluates the expression at the first date of the month, quarter, or year
in the current context instead of the last date.



Summary
In this chapter, we started off by looking at the DAX date and time group of
functions. We looked at how these functions can be used to create a custom
date table in our data model, and how they can be used to find out date-
related information, such as the number of days between two dates.

We then moved on to look at the time intelligence group of functions. We
looked at the three different categories of function available in this group and
how they can be used to help us gain further insight into the data held in our
data model. We worked through a number of hands-on examples of these
functions, using them to return single dates, tables of dates, and learning how
to compare values over different time periods. 

In the next chapter, we will continue our look at DAX functions by learning
about the filter group of functions.



Filter Functions
In this chapter, we are going to be looking at the DAX group of functions that
are used to filter data. We'll start off with a brief description of each of the
functions in this group before turning our attention to some hands-on
examples.

This chapter is broken down into the following sections:

Introduction to filter functions
Filtering your data with filter functions



Introduction to filter functions
We've already looked at some of the filter functions in previous chapters
when we were looking at the evaluation contexts. In Chapter 1, What is DAX?
and Chapter 5, Getting it into Context, we looked in some detail at the
CALCULATE function. We also touched on the ALL, FILTER, and KEEPFILTERS functions.
In this chapter, we'll revisit these and take a more detailed look at some of
the other functions in this group.



Filter function reference
The following gives a list of the DAX functions found in the filter function
group, along with a brief description of the functionality provided by each:

ALL: This returns a table that includes all of the rows of a specified table
or all of the values of the specified column or combination of columns.
It ignores any filters that have been applied to the table. The ALL function
can be used with the CALCULATE and CALCULATETABLE functions to remove
filters from the filter context.
ALLEXCEPT: This is similar to the ALL function in that it returns a table that
includes all of the values for the combination of columns from the
specified table, excluding the specified columns. Like the ALL function, it
can be used with the CALCULATE and CALCULATETABLE functions to remove
filters from all but the specified columns.
ALLNOBLANKROW: This works much like the ALL function, but unlike that
function, it does not include the blank row that is generated when there
is a missing record on one side of a table relationship.
ALLSELECTED: This returns a table that includes all of the rows of a
specified table or all of the values in a column or combination of
columns. It ignores filters applied inside the query, whilst retaining any
external filters. The ALLSELECTED function can be used with the CALCULATE
and CALCULATETABLE functions to restore explicit filters and contexts.
CALCULATE: This evaluates an expression with a context that is modified by
filters. Filter parameters can either remove or restore filters.
CALCULATETABLE: This evaluates a table expression in a context modified by
filters. Filter parameters can either remove or restore filters.
FILTER: This returns a filtered table or table expression using a Boolean
expression that is used to evaluate each row of the table.
KEEPFILTERS: This changes the way filters are applied when evaluating a
CALCULATE or CALCULATETABLE function by overriding the standard behavior of
both functions. Where the filter parameters of the CALCULATE and
CALCULATETABLE functions replace the current context, the KEEPFILTERS function
adds filters to the current context.



LOOKUPVALUE: This returns a single value that is retrieved by searching for
a value in a table. If no match satisfies all of the search values, BLANK is
returned.
REMOVEFILTERS: This removes filters from the specified tables or columns.
The REMOVEFILTERS function is equivalent to the ALL function when used as a
modifier with the CALCULATE and CALCULATETABLE functions.
SELECTEDVALUE: This returns the value of the specified column when there's
only one value to return; otherwise, it returns the alternate specified
result.



Filtering your data with filter
functions
From the brief descriptions given in the previous section, it's not always
clear exactly what each filter function does. The easiest way to understand
these functions is by going through some of them using hands-on examples. In
this section, we're going to do just that, starting with a look at the ALL and
ALLEXCEPT functions.



The ALL and ALLEXCEPT
functions
When used as a table function, and depending on the parameters used, the ALL
function returns a table that contains all of the values of a column, all of the
values of a combination of columns, or all of the rows of a specified table.
More importantly, the ALL function ignores any filters or slicers that may be set,
effectively removing them from the current filter context.

However, when the ALL function is used as a parameter with the CALCULATE and
CALCULATETABLE functions, its functionality is different. Instead of returning a table
that contains all of the values of a specified column or combination of
columns, it removes the specified columns from the current filter context.

The syntax for the ALL function is as follows:

ALL ( [<TableNameOrColumnName>] [, <ColumnName> [, <ColumnName> [, … ] ] ] )

Let's start by demonstrating how the ALL function works as a table function. In
Figure 9-1, we have the following simple report that shows records from the
Product table, filtered using a couple of slicers. It currently shows products
that have a value in the Color column of Red and a value in the Class column
of Regular. Also, there is a count of the selected rows:



Figure 9-1: Filtering a table with slicers in a Power BI Desktop report

The measure to show the count of selected products was created using the
following expression:

Count of Selected Products = COUNTROWS ( 'Product' )

Now, let's create another new measure, this time using a DAX expression that
uses the Product table as the parameter to the ALL function, as shown:

Count of ALL Products = COUNTROWS ( ALL ( 'Product' ) )

This measure is similar to the first but makes use of the ALL function to ignore
the filters coming from our two slicers. This produces the result shown in
Figure 9-2, which equals the total number of records in the Product table:

Figure 9-2: Ignoring slicers with the ALL function



When the column of a table is used as a parameter, the ALL function returns a
table containing a distinct list of values from that column. We will
demonstrate this by creating a new table using the following expression:

Product Color = ALL ( ‘Product'[Color] )

If we look at the new table, we see the result shown in Figure 9-3, which is
the distinct list of values found in the Color column of the Product table:

Figure 9-3: Creating a calculated table with a distinct list of values from a single column of another table

If we supply several columns from the same table as parameters, the ALL
function will return a table that contains a distinct list of values from the
combination of those columns. Again, we will demonstrate this by creating
another new table, this time using the following expression:

Product Color Class and Brand =
 ALL (
     'Product'[Color],
     'Product'[Class],
     'Product'[Brand]
 )

If we look at the new table, we see the following result as shown in Figure 9-
4, which is the distinct list of values coming from the combination of the
Color, Class, and Brand columns of the Product table:



Figure 9-4: Creating a calculated table with a distinct list of values from a combination of columns of another table
When specifying multiple columns for the parameters of the ALL function, they must all
be from the same table.

Now, let's turn our attention to using the ALL function as a filter parameter of
the CALCULATE and CALCULATETABLE functions. As already mentioned, when used in
this manner, the ALL function removes the specified table or columns from the
current filter context.

In the latest versions of DAX, there is a new function called REMOVEFILTERS. This function
is equivalent to the ALL function when used as a modifier with the CALCULATE and
CALCULATETABLE functions.

We can demonstrate this action by creating two new measures using the
following expressions:

Count of Products with Class =
 CALCULATE(
     COUNTROWS ( 'Product' ),
     ALL ( 'Product'[Color] )
 )
 
 Count of Products with Color =
 CALCULATE(
     COUNTROWS ( 'Product' ),



     ALL ( 'Product'[Class] )
)

The first measure will remove the filter created by selecting a value in the
Color slicer, whilst the second will remove the filter created by selecting a
value in the Class slicer. This has the effect of giving us a row count for the
total number of products from the selected class and a row count for the total
number of products with the selected color. This can be seen in Figure 9-5:

Figure 9-5: Using the ALL function to remove individual slicers from a measure

Here, we have 19 products in the Product table that are both Red in color and
are from the Regular class. The first of our measures tells us that there is a
total of 39 products in the Product table that are Red in color irrespective of
their class. The second measure tells us that the Regular class of products
contains a total of 930 products, this time irrespective of their color.

On its own, this may not be particularly useful information, but it does enable
us to work out percentages. So, for example, to work out the selected products



as a percentage of products for a particular class, you could create a measure
using the following expression:

% Selected of Product Class =
DIVIDE (
    COUNTROWS ( 'Product' ),
    'Product'[Count of Products with Class]
)

And to do the same for color, you would create the following measure:

% Selected of Product Color =
DIVIDE (
    COUNTROWS ( 'Product' ),
    'Product'[Count of Products with Color]
)

We will now add these products, correctly formatted as percentages, to our
final report, as shown in the Figure 9-6:

Figure 9-6: Power BI Desktop report showing all of our new measures

As we can see from Figure 9-6, the 19 selected products represent 49% of the
total number of red-colored products. However, they only represent 2% of
products from the Regular class of products.

For more information on using the ALL function, check out the section in Chapter 5,
Getting it into Context, titled Using the ALL function.



Now, let's look at the ALLEXCEPT function. The syntax for the ALLEXCEPT function is
as follows:

ALLEXCEPT ( <TableName>, <ColumnName> [, <ColumnName> [, … ] ] )

As mentioned in the description in the preceding reference list, this
function is very similar to the ALL function.
However, instead of specifying the columns to be removed from the filter
context, you specify the columns that should remain.
It will remove all of the columns in the specified table, except those
given as the column parameters.
Unlike the ALL function, you must specify both the table name and one or
more column names.
The ALLEXCEPT function is useful where you have lots of filters being
applied to the filter context.
Suppose you had a case where there were 30 filters applied and you only
wanted to retain one of them for your calculation. In such a case, if you
were using the ALL function, you would need to pass 29 columns as
parameters.
With the ALLEXCEPT function, you would only need to pass the table name
and the name of the column that you wanted to retain the filter for.



The ALLSELECTED function
Much like the ALL and ALLEXCEPT functions, the ALLSELECTED function removes filters
from the current filter context. It ignores filters applied inside a query, but
will retain any external filters. When used with the CALCULATE and CALCULATETABLE
functions, it enables you to restore explicit filters and contexts.

The syntax for the ALLSELECTED function is as follows:

ALLSELECTED ( [<TableNameOrColumnName>] [, <ColumnName> [, <ColumnName> [, … ] ] ] )

To demonstrate the ALLSELECTED function, let's create two new measures using
the following expressions:

Total ALL Sales =
 CALCULATE (
     SUM ( Sales[Sales Amount] ),
     ALL ( 'Product' )
 )
 
 Total SELECTED Sales =
 CALCULATE (
     SUM ( Sales[Sales Amount] ),
     ALLSELECTED ( 'Product' )
 )

The first of these measures creates a total value that removes all filters
applied to any of the columns in the Product table. The second only removes
filters from inside a query, leaving those applied by any external filters intact.
This means, for example, that any filters being applied by slicers will still be
included in the filter context.

We will now use these measures in the following code to create another two
measures to calculate the percentage of the overall sales total and the
percentage of the sales total for the products selected using an external filter,
such as a slicer:

% ALL Sales =
 DIVIDE (
     SUM ( Sales[Sales Amount] ),



     [Total ALL Sales]
 )
 
 % SELECTED Sales =
 DIVIDE (
     SUM ( Sales[Sales Amount] ),
     [Total SELECTED Sales]
 )

We can now see these measures applied to a new version of our report, as
shown in Figure 9-7:

Figure 9-7: Power BI Desktop report with measures added to a table

As can be seen, the Total ALL Sales measure removes all filters coming from
columns in the Product table, whilst the Total SELECTED Sales measure only
removes filters from within the query being created by the table visual. It does
not remove the external filters coming from the two slicers. This gives us the
overall total for sales of the products selected using the slicers.



The FILTER function
Next, we are going to look at the FILTER function. This function returns a
filtered table, using a Boolean expression that is used to evaluate each row
of a specified table.

The syntax for the FILTER function is as follows:

FILTER ( <Table>, <FilterExpression> )

The first parameter is the name of the table that is to be filtered.
The second parameter is the DAX expression that is to be applied to
each row of the table specified with the first parameter.
The expression must evaluate to TRUE or FALSE.

Let's look at a practical example of this function in operation. Consider the
following measure:

Count of Regular Products =
 COUNTROWS (
     FILTER (
         'Product',
         'Product'[Class] = "Regular"
     )
)

The result of this measure can be seen in Figure 9-8:



Figure 9-8: Using the FILTER function in a measure

Here, we can see that the FILTER function has iterated through the Product
table, looking for products with a value in the Class column equal to
Regular. The rows that evaluated to TRUE were then returned, as a table, to the
COUNTROWS function, giving the values we see in the Count of Regular Products
column in the preceding screenshot.

You can add additional constraints to the DAX expression being used as a
filter, including the use of the AND and OR operators. You can also use the
RELATED function to check for conditions in tables related to the table specified
as the table parameter of the FILTER function.

You should also remember that any explicit filters you create using the FILTER
function are on top of any implicit filters that may be coming from external
sources such as slicers.



The KEEPFILTERS function
As a function, the KEEPFILTERS function does not return a value as such. Instead,
it is a filter modifier that overrides the standard behavior of the CALCULATE and
CALCULATETABLE functions.

The syntax for the KEEPFILTERS function is as follows:

KEEPFILTERS ( <Expression> )

The KEEPFILTERS function changes the way filters are applied when evaluating a
function. Where the filter parameters of the CALCULATE and CALCULATETABLE
functions would normally remove columns from the filter context, the
KEEPFILTERS function will prevent them being removed if they conflict with the
expression being given as the parameter of the KEEPFILTER function.

Let's demonstrate this with an example. Suppose we have the following
measure:

Sales Amount for Red Products =
 CALCULATE (
     SUM ( Sales[Sales Amount] ),
     'Product'[Color] = "Red"
)

This measure may give us undesired results. By default, it will remove the
Color column of the Product table from the filter context. We can see the
results of this in Figure 9-9, where the measure has been used in a table
visual:



Figure 9-9: Displaying a measure that doesn't use the KEEPFILTERS function

As it is, the filter parameter of the CALCULATE function overrides the Color filter
that is being passed from the Color column of the visual. Where a Brand does
not have a red-colored product, the measure returns a null; otherwise, it
returns the total value for the Brand.

If we now modify the measure to use the KEEPFILTERS function with the filter
parameter of the CALCULATE function, then the filters being applied by the visual
to the Color column will be preserved.

Suppose we modify our original measure to the following:

Sales Amount for Red Products =
 CALCULATE (
     SUM ( Sales[Sales Amount] ),
     KEEPFILTERS ( 'Product'[Color] = "Red" )
 )

Then we get the desired result, as can be seen in Figure 9-10:



Figure 9-10: Using the KEEPFILTERS function

Now, the Color filter being generated by the table visual is preserved in the
filter context, despite the column being used as a filter parameter of the
CALCULATE function. As expected, we only get a figure against the brand when
the color is equal to Red.



The LOOKUPVALUE function
The LOOKUP function returns a single value, which is retrieved by searching for
a value in a lookup table. If a match that satisfies all of the search values
cannot be found, either an alternative result can be specified or, if not, BLANK
will be returned.

This function is useful when you have a situation where you need to obtain a
value from a lookup table that is not related to the table that contains the
source value.

The syntax for the LOOKUPVALUE function is as follows:

LOOKUPVALUE ( <Result_ColumnName>, <Search_ColumnName>, <Search_Value> [,

<Search_ColumnName>, <Search_Value> [, … ] ] [, <Alternate_Result>] )

For the first parameter, we need to specify the name of the column
containing the values you want returned as the end result. This is usually
a fully qualified name that includes both the table name and the column
name. We cannot use an expression for this parameter.
For the second parameter, we need to specify the name of a column that
will be used as the lookup value. This column must be in the same table
used for the first parameter or a table that is related to it. Again, it
cannot be an expression.
The third parameter is a scalar expression, which must not refer to a
column in the table that is being searched.
Finally, we can also supply an alternate result, which will be used if a
lookup value is not found, or multiple results are returned by the search
criteria.

If an alternate result is not specified, then no value being returned will result in BLANK,
and multiple values being returned will result in an error.

You can have multiple search columns and values, and the result that is
returned will be the value of the column specified in the first parameter,



where all of the search columns and values match.

Now, let's show this function in action. We'll start with a very simple data
model containing two tables, as shown in Figure 9-11, which are not
connected by a relationship:

Figure 9-11: Simple data model with two unrelated tables

The Employee table contains the data shown in Figure 9-12:

Figure 9-12: The Employee table

On the other hand, the Employee Salary table contains the values shown in
Figure 9-13:



Figure 9-13: The Employee Salary table

Now, let's create a new calculated column in the Employee table that takes
the value of the Salary column in the Employee Salary table, where the
Employee ID values match. We will do this with the following DAX
expression:

Salary Lookup =
 LOOKUPVALUE(
     'Employee Salary'[Salary],
     'Employee Salary'[EmployeeID],
     Employee[EmployeeID],
     0
 )

Figure 9-14 shows the Employee table with the new Salary Lookup column
added:

Figure 9-14: Adding the Salary Lookup column to the Employee table

You can see that John's salary has a value of zero, which is the alternate
result value, as he does not have a corresponding record in the Salary table.



The SELECTEDVALUE function
The final filter function that we're going to look at in this chapter is the
SELECTEDVALUE function. This function returns the value of the specified column
when there's only one value in the current filter context to return. If no value is
selected, or more than one value is selected, it can return an optionally
specified alternate result.

The syntax for the SELECTEDVALUE function is as follows:

SELECTEDVALUE ( <ColumnName> [, <AlternateResult>] )

We will demonstrate a potential use of this function by creating a new
measure using the following DAX expression:

Selected Class =
 SELECTEDVALUE (
     'Product'[Class],
     "N/A"
 )

Internally, the SELECTEDVALUE function is just simplified syntax for the combined
use of the HASONEVALUE and VALUES functions. The measure can be written using the
following expression:

Selected Class =
 IF (
     HASONEVALUE ( 'Product'[Class] ),
     VALUES ( 'Product'[Class] ),
     "N/A"
 )

We can now use the first measure to display a dynamic title, as shown in
Figure 9-15:



Figure 9-15: Displaying a dynamic title

As we can see, the Class slicer is adding one value in the Class column of the
Product table to the filter context. As such, the title displays the selected value
coming from the Class slicer. However, there is an issue with this. If no
values are selected with the slicer, or more than one value is selected, the
SELECTEDVALUE function will return the alternate result, which, in our example, is
N/A.

If an alternate result is not specified in the parameters, then when no value is
selected, or more than one value is selected, the SELECTEDVALUE function will return BLANK.

To overcome this problem, we can amend our measure to use the IF and
ISFILTERED functions, as follows:

Selected Class =
 SELECTEDVALUE (
     'Product'[Class],



     IF (
         ISFILTERED ( 'Product'[Class] ),
         "Multiple Selected Values",
         "No Selected Values"
     )
 )

The ISFILTERED function returns TRUE or FALSE depending on whether the
specified column is included in the current filter context.
By using this in conjunction with the SELECTEDVALUE function, we can tell
whether a column is filtered, and if it is, whether it has one or more
values selected.
Based on this, our revised measure will return one of two alternate
results, depending on whether values are selected with the Class slicer.

Figure 9-16 shows the result of our measure when no values are selected with
the Class slicer:

Figure 9-16: Dynamic title when no values are selected with the slicer

Figure 9-17 shows the result of our measure when multiple values are
selected with the Class slicer:



Figure 9-17: Dynamic title when multiple values are selected with the slicer

In addition to being a great way of creating dynamic titles, the SELECTEDVALUE
function can be used anytime you need to retrieve a single value from the filter
context. However, you should remember that the SELECTEDVALUE function only
works with the filter context, not the row context.



Summary
In this chapter, we looked at the group of DAX functions used to filter data.
We revisited the ALL and ALLEXCEPT functions, looking at how they can be used
as standalone table functions and how they behave differently when used
with the CALCULATE function. We looked at the ALLSELECTED function and how it can
be used to remove filters inside a query, whilst retaining those filers coming
from outside the query.

We also took a more detailed look at some of the other functions in this
group, exploring their use through a number of hands-on examples.

In the next chapter, we will take our final look at DAX functions, this time
looking at the statistical group of functions.



Statistical Functions
This is the last chapter in which we will be looking at the different groups of
DAX functions. In this chapter, we will be looking at the group of functions
that help us to perform statistical aggregations.

As in previous chapters, we will start this chapter with a complete list of the
functions found in this group, along with a brief description of each. We'll
then move on and look in more detail at some of the more commonly used
functions in this group, all while using hands-on examples to explain how
they work.

The chapter is broken into the following sections:

Introducing statistical functions
Calculating averages
Working with percentiles
Ranking your data
Calculating standard deviation and variance



Introducing statistical functions
The statistical group of DAX functions is one of the largest, with over 40
different functions currently available. Recently, several new functions were
added to this group that replicate some of the advanced statistical functions
found in Excel.

As well as some of the more specialist functions found in this group, it also
contains functions that will help you compute more frequently needed
statistical values, such as averages, percentiles, ranking, and standard
deviation.

In this section of this chapter, we will look at the list of functions that are
currently available in this group.



Statistical function reference
The following list details the DAX functions currently found in the statistical
function group, along with a brief description of what each function does:

AVERAGE: Calculates the average value of all the numbers in a column.
This function only works with numeric values and cannot handle text or
non-numeric values.
AVERAGEA: Calculates the average value of all the values in a column. In
addition to numeric values, this function will attempt to handle text and
non-numeric values.
AVERAGEX: Calculates the average value of a set of expressions evaluated
over a table.
BETA.DIST: Calculates the value of the beta distribution.
BETA.INV: Calculates the value of the inverse of the beta cumulative
probability density function (BETA.DIST).
CHISQ.DIST: Calculates the value of the chi-squared distribution.
CHISQ.DIST.RT: Calculates the value of the right-tailed probability of the
chi-squared distribution.
CHISQ.INV: Calculates the value of the inverse of the left-tailed probability
of the chi-squared distribution.
CHISQ.INV.RT: Calculates the value of the inverse of the right-tailed
probability of the chi-squared distribution.
COMBIN: Calculates the value of the number of combinations, excluding
repetitions, for a specified number of items.
COMBINA: Calculates the value of the number of combinations, including
repetitions, for a specified number of items.
CONFIDENCE.NORM: Using a normal distribution, calculates a value for the
confidence interval for a population mean.
CONFIDENCE.T: Using a Student's t-distribution, calculates a value for the
confidence interval for a population mean.
EXPON.DIST: Calculates the value of the exponential distribution.
GEOMEAN: Calculates the value of the geometric mean of a specified
column.



GEOMEANX: Calculates the value of the geometric mean of a set of
expressions evaluated over a table.
MEDIAN: Calculates the value of the 50th percentile of values in a column.
MEDIANX: Calculates the 50th percentile of a set of expressions evaluated
over a table.
NORM.DIST: Calculates the value of the normal distribution for the
specified mean and standard deviation.
NORM.INV: Calculates the value of the inverse of the normal cumulative
distribution for the specified mean and standard deviation.
NORM.S.DIST: Calculates the value of the standard normal distribution.
NORM.S.INV: Returns the inverse of the standard normal cumulative
distribution.
PERCENTILE.EXC: Calculates the value of the kth percentile of values in a
column, with k in the range 0..1 exclusive.
PERCENTILE.INC: Calculates the value of the kth percentile of values in a
column, with k in the range 0..1 inclusive.
PERCENTILEX.EXC: Calculates the value of the kth percentile of a set of
expressions evaluated over a table, with k in the range 0..1 exclusive.
PERCENTILEX.INC: Calculates the value of the kth percentile of a set of
expressions evaluated over a table, with k in the range 0..1 inclusive.
PERMUT: Calculates the number of permutations for the specified number
of objects that can be selected from number objects.
POISSON.DIST: Calculates the value of the Poisson distribution.
RANK.EQ: Calculates a value for the rank of a number in a column of
numbers.
RANKX: Calculates a value for the rank of a set of expressions evaluated
over a table.
SAMPLE: Returns a table containing a sample subset, consisting of a
specified number of rows from a specified table expression.
STDEV.P: Calculates the value of the standard deviation for the entire
population of the specified column. Ignores logical values and text.
STDEV.S: Calculates the value of the standard deviation for a sample
population from the specified column. Ignores logical values and text in
the sample.
STDEVX.P: Calculates the value of the standard deviation for the entire
population, which results from a set of expressions evaluated over a
table.



STDEVX.S: Calculates the value of the standard deviation for a sample
population, which results from a set of expressions evaluated over a
table.
T.DIST: Calculates the value of the Student's left-tailed t-distribution.
T.DIST.2T: Calculates the value of the two-tailed Student's t-distribution.
T.DIST.RT: Calculates the value of the right-tailed Student's t-distribution.
T.INV: Calculates the value of the left-tailed inverse of the Student's t-
distribution.
T.INV.2T: Calculates the value of the two-tailed inverse of the Student's t-
distribution.
VAR.P: Calculates the value of the variance for the entire population of
the specified column.
VAR.S: Calculates the value of the variance for a sample population of the
specified column.
VARX.P: Calculates the value of the variance for the entire population,
which results from a set of expressions evaluated over a table.
VARX.S: Calculates the value of the variance for a sample population,
which results from a set of expressions evaluated over a table.
XIRR: Calculates the value of the internal rate of return (IRR) for a
schedule of cash flows, which is not necessarily periodic.
XNPV: Calculates the value of the net present value (NPV) for a
schedule of cash flows.

Many of the statistical functions in this group are used for advanced
calculations, and a full understanding of how they are applied is beyond the
scope of this book. However, as these functions can also be found in Excel,
they are well documented, and you should have no problem finding detailed
articles about them online.

We will only be looking at a selection of the statistical functions in this chapter. If
you want details about all the statistical functions, then the official Microsoft
documentation can be found at https://docs.microsoft.com/en-us/dax/statistical-functions-dax.

In the following section, we will look at some of the more frequently used
functions that, as a business intelligence professional, you are more likely to
come across or need to use to gain further insight into your data. Specifically,
we are going to look at some examples of calculating averages, percentiles,
rankings, standard deviations, and variances.

https://docs.microsoft.com/en-us/dax/statistical-functions-dax


Calculating averages
In this section, we're going to focus on two of the DAX functions designed
specifically for calculating averages: the AVERAGE and AVERAGEX functions.



The AVERAGE function
The syntax for the AVERAGE function is as follows:

AVERAGE ( <ColumnName> )

This is a very simple function that is used to calculate the average value (or
the arithmetic mean) of all the numbers in a specified column. It's important
to remember that this function only works with numeric values, and it cannot
handle text or non-numeric values. If you want to include non-numeric values
in your calculation, you will need to use the AVERAGEA function instead, which
uses the same syntax as the AVERAGE function.

The AVERAGEA function deals with Boolean values as if they are integers, with TRUE
returning a 1 and FALSE returning a 0. Any string values, including empty strings, will
result in a 0, even if the string contains a number. This limits the usefulness of the
AVERAGEA function. It is better to use the AVERAGEX function, where you can convert string
values that contain a number using the VALUE function.

To demonstrate the AVERAGE function, create a new measure by using the
following expression:

Avg Sales Amount = AVERAGE ( Sales[Sales Amount] )

This gives us a very simple measure, which is the average amount of all
sales made to date, or the average of all the values in the Sales Amount
column of the Sales table. We can use this measure to slice and dice the sales
data. For example, we can create a chart to show the average sales amount
for each year, as shown in Figure 10-1:



Figure 10-1: Average sales for each year

We can create a slightly more sophisticated measure by using the following
expression:

Avg Sales Amount for Red Products =
 CALCULATE (
    AVERAGE ( Sales[Sales Amount] ),
    KEEPFILTERS ( 'Product'[Color] = "Red" )
)

This measure will give us the average sales amount, but only for those
products with a color of Red. We could use this measure to show a
comparison of the average sales for red-colored products against the average
of all sales, as can be seen in Figure 10-2:

Figure 10-2: Average sales per year compared to average sales for red products



Here, we can easily see that the average sales amount for red products
compared to the overall average sales amount is increasing year by year.



Calculating rolling averages with
the AVERAGEX function
Like the other iterator functions, the AVERAGEX function will iterate over the
table passed in as the first parameter, and will then give the average of
values returned by the expression given as the second parameter. As such,
this gives us a very flexible way to calculate averages, including being able
to calculate a rolling average.

The syntax for the AVERAGEX function is as follows:

AVERAGEX ( <Table>, <Expression> )

For the first parameter, we need to specify a table or table expression over
which we want to iterate. For the second parameter, we need to give a
measure. For our rolling average, we need to create a measure for the total
sales amount. We can do this by using the following simple expression:

Total Sales = SUM ( Sales[Sales Amount] )

Next, we need to create a measure using the AVERAGEX function, which will go
through the dates in the Date table and calculate the average based on the
daily total sales amounts, up to and including the date of the current row. This
can be done by using the following expression:

Rolling Avg Total Sales =
AVERAGEX (
    FILTER (
        ALL ( 'Date Table' ),
        'Date Table'[Date]
            <= MAX ( 'Date Table'[Date] )
    ),
    [Total Sales]
)

The FILTER function in this expression returns all the dates prior to the current
date, up to and including the current date. The AVERAGEX function then iterates



over these dates and calculates the average of the values returned by the
Total Sales measure. We can see the result of this more clearly by looking at
the table shown in Figure 10-3:

Figure 10-3: Rolling average of sales

So, for the first date, the measure calculates the average for this date only.
For the second date, it calculates the average based on the totals for the first
two dates, while for the third date, it's based on the totals for the first three
dates. It will continue through all the dates in the Date table, calculating the
rolling average for the total sales amount.



Working with percentiles
There are six DAX functions in this function group that will help you
calculate percentile values for a given set of data. They are PERCENTILE.EXC,
PERCENTILE.INC, PERCENTILEX.EXC, PERCENTILEX.INC, MEDIAN, and MEDIANX.

A percentile is a statistical measure that gives the value where a certain percentage
of values in a dataset fall below it. For example, the 30th percentile will be the value
in a dataset where 30% of the values fall below it, and the remaining 70% are
above it.

Before we start to look at these functions, let's use the following expression
to create a new table, which will contain the numbers 1 through to 20:

Numbers = GENERATESERIES ( 1, 20 )

Now, we can use this table as our dataset to help us understand how these
functions work. We'll start by looking at the first of these functions.



The PERCENTILE.EXC and
PERCENTILE.INC functions
The syntax for the PERCENTILE.EXC function is as follows:

PERCENTILE.EXC ( <Column>, <K> )

The syntax for the PERCENTILE.INC function is as follows:

PERCENTILE.INC ( <Column>, <K> )

For the first parameter, we need to give the column that contains the values
for the dataset that we want to work with. For the second parameter, we need
to give the percentile value (the kth) that we want to calculate, with the value
being between 0 and 1—in other words, the point at which a certain
percentage of values in the dataset are below.

We can demonstrate this function by creating a measure that will calculate the
25th percentile for the values in the Numbers table that we've just created.
We can do this with the following expression:

Numbers 25th Percentile = PERCENTILE.EXC ( 'Numbers'[Value],  0.25 )

This will return the value shown in Figure 10-4:

Figure 10-4: The 25th percentile figure

So, any numbers in our Numbers table that are below this value are said to
be in the 25th percentile. This is also equivalent to the first quartile.



If we want to find the remaining quartiles, then we need to find the values for
the 50th percentile and the 75th percentile. We can do this by creating two
more measures using the following expressions:

Numbers 50th Percentile = PERCENTILE.EXC ( 'Numbers'[Value],  0.50 )
Numbers 75th Percentile = PERCENTILE.EXC ( 'Numbers'[Value],  0.75 )

This will give us the results shown in Figure 10-5:

Figure 10-5: The 25th, 50th and 75th percentile figures

One thing to note about the PERCENTILE.EXC function is that the values for the
second parameter must be in the range 1/(N+1) to N/(N+1), where N is the
number of values in the dataset. So, for example, if the value of the second
parameter for our Numbers table was 0.047, it would generate the error
shown in Figure 10-6:

Figure 10-6: Error generated when using an invalid value with the PERCENTILE.EXE function

However, if you use the PERCENTILE.INC function, the value for the second
parameter can be any value between 0 and 1.

Essentially, what the PERCENTILE.EXC function is saying is that there are no
values in the dataset that are below the 4.7th percentile, while the



PERCENTILE.INC function uses a different formula to calculate a number. If
accuracy is more important, then it is recommended that you use the
PERCENTILE.EXC function over the PERCENTILE.INC function.



The PERCENTILEX.EXC and
PERCENTILEX.INC functions
The syntax for the PERCENTILEX.EXC function is as follows:

PERCENTILEX.EXC ( <Table>, <Expression>, <K> )

The syntax for the PERCENTILEX.INC function is as follows:

PERCENTILEX.INC ( <Table>, <Expression>, <K> )

These functions work much like their standard counterparts, except that, like
all the X functions, these will calculate the value of the percentile by iterating
over the rows of a specified table, evaluating a set of expressions.

For the first parameter, we need to specify the table over which to iterate.
For the second parameter, we need to give the expression that will be
evaluated. For the third—and final—parameter, we need to give the
percentile value (the kth) that we want to calculate, with the value being
between 0 and 1.

Let's demonstrate this, using our Numbers table, by creating a new measure
by using the following expression:

Numbersx10 25th Percentile =
PERCENTILEX.EXC (
    Numbers,
    [Value] * 10,
    0.25
)

What this is doing is calculating the value for the 25th percentile, for the
values in the Numbers table multiplied by 10. In other words, for numbers
between 10 to 200, find the value below which you would find the bottom
25% of the numbers.



This will return the value shown in Figure 10-7:

Figure 10-7: The 25th percentile figure

Again, with the PERCENTILEX.EXC function, the value for the third parameter must
be in the range 1/(N+1) to N/(N+1), where N is the number of values in the
dataset. If you use the PERCENTILEX.INC function, the value for the third parameter
can be any value between 0 and 1.



The MEDIAN and MEDIANX
functions
The syntax for the MEDIAN function is as follows:

MEDIAN ( <Column> )

The syntax for the MEDIANX function is as follows:

MEDIANX ( <Table>, <Expression> )

The MEDIAN and MEDIANX functions will calculate the value of the 50th percentile
of the values in a column or a set of expressions evaluated over a table. They
are equivalent to the percentile functions being used to calculate the 50th
percentile. In fact, we can demonstrate this by creating a new measure, using
the following expression:

Numbers Median = MEDIAN ( 'Numbers'[Value] )

This will return the median value for the numbers in our Numbers table,
which—as we can see from Figure 10-8—matches the value we got for the
50th percentile in our previous example:

Figure 10-8: The median figure

The MEDIANX function, like the other iterator functions, requires a table for its
first parameter, which it will use to iterate over. For its second parameter, it
requires an expression, which it will evaluate for each row in the table over



which it is iterating. From the dataset it computes, it will then calculate the
value of the median.



Ranking your data
DAX has a couple of functions that enable us to sort and rank data in a table.
The first of these—the RANK.EQ function—will calculate a value for the rank of
a number in a specified column of numbers.



The RANK.EQ function
The syntax for the RANK.EQ function is as follows:

RANK.EQ ( <Value>, <ColumnName> [, <Order>] )

For the first parameter, we need to specify the value that is to be ranked. For
the second parameter, we need to give the column against which the value
will be ranked. Finally, we can specify an optional order over which the
ranking is to be applied. This can be either ascending (ASC) or descending
(DESC). If it is not specified, then the default order will be descending.

It is quite common to use the same column for both the value and the column name
parameters.

We can demonstrate the use of the RANK.EQ function by adding a new calculated
column to the Numbers table we created in the previous section on working
with percentiles. Create a new column using the following expression:

Rank of value = RANK.EQ ( Numbers[Value], Numbers[Value], ASC )

This will produce the result shown in Figure 10-9:



Figure 10-9: Ranking values in a table with the RANK.EQ function

The RANK.EQ is mostly used for compatibility with Excel and is usually only
used when migrating a formula. The RANKX function provides more flexibility
and is the function that is more often used for ranking data.



The RANKX function
Unlike many of the other iterator X functions, RANKX is not just an iterator
version of the RANK.EQ function. It offers us much more flexibility in how we
can rank our data.

The syntax for the RANKX function is as follows:

RANKX ( <Table>, <Expression> [, <Value>] [, <Order>] [, <Ties>] )

For the first parameter, we need to give a table name or an expression that
returns a table. The second parameter is an expression that will evaluate to a
scalar value. The function will iterate through the table, ordering the values
returned by the expression with a ranking number.

The remaining parameters are all optional. The third parameter is a scalar
DAX expression, whose value will be used to find the ranking. If this
parameter is omitted, then the value of the expression given for the second
parameter will be evaluated for the current row and used instead. In practice,
the third parameter is usually omitted, unless there is a special reason to use
it.

The fourth parameter defines the order over which the ranking is to be
applied. This can either be ascending (ASC) or descending (DESC). If it is not
specified, then the default order will be descending.

Finally, the fifth optional parameter defines how the ranking for tied values
will be treated. Specifying Dense for this parameter will mean that the next
rank value, after a tie, will be the next rank value in the sequence. For
example, you may have a ranking sequence that looks like this: 1,2,3,3,3,4,5.
Specifying Skip for this parameter means that the next rank value, after a tie,
will skip over the count of tied values. For example, you may have a ranking
sequence that looks like this: 1,2,3,3,3,6,7.



Slightly confusingly, the RANKX function can be used in expressions that create
both calculated columns and measures. We'll start our practical examples by
creating a new calculated column for the Product table that ranks values for
the Total Sales measure for a row against all the other rows in the Product
table. The following expression can be used to create the new column:

RANKX Total Sales by Product =
RANKX (
    'Product',
    [Total Sales]
)

We can see the result of adding this new column in Figure 10-10:

Figure 10-10: Ranking values in a table with the RANKX function

The new column ranks each of the products based on the value in the Total
Sales column, with the product with the highest value in the Total Sales
column ranked as 1. This is because, by default, the RANKX function will order
those products with a higher total sales amount with a lower ranking.

We can change this order by specifying the order parameter. Let's amend the
definition of the expression we used to create our calculated column by
adding ASC as the fourth parameter, like this:



RANKX Total Sales by Product =
RANKX (
    'Product',
    [Total Sales],,
    ASC
)

This will give us a new result, which can be seen in Figure 10-11:

Figure 10-11: Ranking values in a table with the RANKX function in ascending order

Now, the products with higher values in the Total Sales column are ranked
with a higher ranking.

Although we don't have any tied rankings in the preceding screenshot, if we
did, by default, they would skip rankings. If we didn't want any gaps in the
rankings, then we could override the default behavior by specifying Dense for
the fifth optional parameter.

Next, we are going to look at how you we create a calculated column that
enables us to apply rankings within a subgroup. To do this, we need to make
use of the FILTER function.



Let's create a new calculated column in the Product table by using the
following expression:

RANKX Total Sales by Product (by Subgroup) =
RANKX (
    FILTER (
        'Product',
        'Product'[Manufacturer] = EARLIER( 'Product'[Manufacturer] )
    ),
    [Total Sales]
)

The use of the FILTER function adds an additional row context to the
calculation, based on the value in the Manufacturer column. The RANKX
function is now only evaluating rows in the Product table where the value of
the Manufacturer is equal to the value of the Manufacturer of the current row.

We can see the result of this new column in Figure 10-12:

Figure 10-12: Applying rankings using subgroups

As we can see, the new column now gives a ranking that is reset when the
value of the Manufacturer column changes.



Now, we are going to move on to looking at using the RANKX function with a
measure. We'll start by creating a simple measure that ranks products by the
value of total sales, by the manufacturer. We can do this by creating a new
measure with the following expression:

RANKX Products by Manufacturer =
RANKX (
    ALL ( 'Product'[Manufacturer] ),
    [Total Sales],,
    ASC,
    Dense
)

With this measure, we have also specified that the order should be ascending
and that tied values should use a Dense ranking. This means that manufacturers
with a higher value for total sales will be ranked with a higher-ranking
number. It also means that where there are tied values, the next rank number,
after a tie, will be the next rank number in the sequence.

The result of this expression can be seen in Figure 10-13:

Figure 10-13: Using the RANKX function with a measure

For this measure, we are making use of the ALL function. In this case, instead
of being used to remove filters from the filter context, as it would when used
with the CALCULATE function, it is being used to return a table that contains a
distinct list of manufacturers from the Product table. The RANKX function will
then use this to iterate over, using the Total Sales measure to calculate the
order of ranking.



If we now add another column from the Product table to act as a subgroup,
we will find that the RANKX measure automatically ranks the value of the Total
Sales measure, by Manufacturer, within that subgroup.

This can be seen in Figure 10-14, and is when we add the Class column from
the Product table to our visual:

Figure 10-14: Using the ranking measure with subgroups

However, if we want to look at ranking based on the combination of values
from the Manufacturer and Class columns, we will need to change the
definition of our measure. We will need to add the Class column from the
Product table to the parameters of the ALL function. The following code shows
the expression that's used for our revised measure:

RANKX Products by Class and Manufacturer =
RANKX (
    ALL (
        'Product'[Class],
        'Product'[Manufacturer]
    ),
    [Total Sales],
    ,
    ASC,



    Dense
)

The result of this revised measure can be seen in Figure 10-15, where we
now have the ranking for the value of the Total Sales measure applied over
the combination of the Class and Manufacturer columns:

Figure 10-15: Using the revised ranking measure

We could calculate the ranking over additional columns from the Product
table simply by adding them to the parameters of the ALL function and then
adding them to our table visual.



Calculating standard deviation and
variance
This group of DAX functions contains several aggregation functions that will
help you to calculate the standard deviation and variance of a population.
There are two variations of each function: one with a suffix of .P and the other
with a suffix of .S. The functions that end with .P calculate the result using a
formula that is based on the assumption that the data represents the entire
population. Those ending with .S use a slightly different formula that is based
on the assumption that the data represents a sample of the entire population.

As with the other functions in this group, there are also versions of the
functions that work with a single column and versions that iterate over a table,
evaluating an expression. Let's start by looking at the four functions that will
help you to calculate standard deviation.

A detailed explanation of standard deviation is beyond the scope of this book.
However, if you would like to find out more about it, check out the Wikipedia page on
standard deviation at https://en.wikipedia.org/wiki/standard_deviation.

The syntax for the STDEV.P function is as follows:

STDEV.P ( <ColumnName> )

The syntax for the STDEV.S function is as follows:

STDEV.S ( <ColumnName> )

The syntax for the STDEVX.P function is as follows:

STDEVX.P ( <Table>, <Expression> )

The syntax for the STDEVX.S function is as follows:

STDEVX.S ( <Table>, <Expression> )

https://en.wikipedia.org/wiki/standard_deviation


To demonstrate the use of these standard deviation functions, we are going to
create some new measures, based around the sales quantity. Create these by
using the following expressions:

Avg Sales Quantity = AVERAGE ( Sales[Sales Quantity] )
Min Sale Quantity = MIN ( Sales[Sales Quantity] )
Max Sales Quantity = MAX ( Sales[Sales Quantity] )
StdDevP Sales Quantity = STDEV.P ( Sales[Sales Quantity] )
StdDevS Sales Quantity = STDEV.S ( Sales[Sales Quantity] )

Now, we can add these to a table visual, along with the Product Name column
from the Product table. This gives us the result shown in Figure 10-16:

Figure 10-16: Table using standard deviation functions

You will see that, in some cases, there is a slight variation in the results
calculated by the STDEV.P and STDEV.S functions. The STDEV.S function may
calculate a higher standard deviation than the STDEV.P function.

Now, let's turn our attention to the functions that will calculate variance.



The syntax for the VAR.S function is as follows:

VAR.S ( <columnName> )

The syntax for the VAR.P function is as follows:

VAR.P ( <columnName> )

The syntax for the VARX.S function is as follows:

VARX.S ( <table>, <expression> )

The syntax for the VARX.P function is as follows:

VARX.P ( <table>, <expression> )

We can demonstrate the use of these variance functions by creating a couple
more measures, based on sales quantity. Create these new measures by using
the following expressions:

VarP Sales Quantity = VAR.P ( Sales[Sales Quantity] )
VarS Sales Quantity = VAR.S ( Sales[Sales Quantity] )

We can then add these to the table we created in this example, which will give
us the result shown in Figure 10-17:



Figure 10-17: Table with variance functions added

As with the standard deviation functions, the variance functions will calculate
the variance slightly differently. The VAR.S function may calculate a higher
variance than the VAR.P function.



Summary
In this chapter, we looked at the group of DAX functions used to help us
calculate statistical data. We started with a look at the complete list of the
functions in this group, along with a brief description of each. We then moved
on to look in more detail at some of the more commonly used functions in this
group.

We looked at those functions that can be used to calculate averages,
percentiles, and to rank our data, all while working through some examples
of each function being used. We rounded off this chapter by taking a brief
look at those functions that can be used to calculate standard deviation and
variance.

In the next chapter, we will move beyond the different groups of DAX
functions and take a look at some examples of DAX patterns.



Working with DAX Patterns
In this chapter, we're going to look at the concept of DAX patterns. As with
other software design patterns, a DAX pattern consists of a template that
forms the basis of a reusable solution to a commonly encountered problem.

We'll start with an introduction to the Quick Measures feature in Power BI
Desktop. As the name suggests, this is a quick and easy way to create a DAX
measure, without needing to know any DAX code. Behind the scenes, it uses
predefined DAX patterns that are completed using the responses you provide
through the Quick Measures dialog.

Having explored how the Quick Measures feature works, we'll look at some
examples of the measures that are available by using them with hands-on
examples.

The chapter is broken into the following sections:

Introducing Power BI Quick Measures
Calculating cumulative totals
Binning data using segmentation
Comparing equivalent periods
Working with mathematical patterns



Introducing Power BI Quick
Measures
In software engineering, a coding pattern refers to a coding solution in the
form of a template or partially completed code that can be used repeatedly in
different scenarios. It provides a way to develop software using a tried-and-
tested approach.

The idea of DAX patterns also centers around the concept of reusable
templates that contain a set of DAX expressions. There are plenty of
examples of DAX patterns available on the internet, but the easiest way to
get started is through the Quick Measures feature in Power BI Desktop.

If you want a great example of a site that provides a wide range of DAX patterns,
check out the following site: https://www.daxpatterns.com/.

The Quick Measures feature in Power BI Desktop provides a great way to
quickly create commonly used and powerful measures in your Power BI
report. Better still, like all measures, they are built using a set of DAX
expressions that you can access and modify to meet your exact requirements.
They are also created using proven DAX code, which means they are a
reliable way to start creating DAX measures.

Although the idea behind Quick Measures is that you can start creating measures
without needing to know any DAX, understanding how the code they generate
works does require a good level of DAX knowledge.

At the time of writing this book, the Quick Measures feature contains patterns
that fall within the following categories:

Aggregations per category
Filters
Time intelligence
Totals
Mathematical operations

https://www.daxpatterns.com/


Text

Another great thing about the DAX patterns that are created by Quick
Measures is that the DAX code they generate can be reused in Excel Power
Pivot, SQL Server Analysis Services (SSAS) Tabular, and anywhere else
that DAX is used.



Creating your first quick measure
There are a couple of ways you can get started with creating a quick measure
in Power BI Desktop, as follows:

1. Right-click on any item in the Fields pane and select New quick
measure from the context menu that appears, as shown in Figure 11-1:

Figure 11-1: Create a new quick measure from the field context menu in Power BI Desktop

2. Alternatively, click on the New Quick Measure button on the
Calculations section of the Home ribbon, as shown in Figure 11-2:



Figure 11-2: Create a new quick measure from the Calculations section of the Home ribbon in Power BI Desktop

3. This will bring up the Quick Measures dialog, where you will be able
to select, from a drop-down menu, the type of calculation you want to
use to create your new measure, along with the fields you want to use
with the calculation.

4. Figure 11-3 shows the Quick Measures dialog. On the left-hand side is
the list of available calculations, while on the right-hand side is the list
of the tables and fields available from your data model:



Figure 11-3: The Quick measures dialog

5. To create a quick measure, select a calculation from the list on the left-
hand side. In the example shown in Figure 11-4, we have picked the
Year-to-date total measure from the Time intelligence group:



Figure 11-4: Creating a year-to-date measure through the quick measures dialog

6. For this measure, we'll populate the Date parameter with the Date field
from the table called Date table.

7. For the Base value parameter, we'll use the Sales Amount from the
Sales table. The Sales Amount will be aggregated using the SUM function
by default, but you can select other aggregations.

8. Click on the OK button to create the new quick measure.

Once the measure is created, you will have an example of an expression that
follows a defined code pattern:



Figure 11-5: Adding the year-to-date quick measure to a table

Figure 11-5 shows this measure added to a table that also shows the total
Sales Amount for each day. As you can see, our new measure gives us a way
of calculating a running total. In the next section, we'll be looking at the code
behind this measure, along with some other examples of code that have been
created following a DAX pattern.



Calculating cumulative totals
In the previous section of this chapter, we looked at creating a quick measure
for year-to-date totals. The DAX expression that is created for this measure is
an example of the Cumulative Total pattern. In this case, the pattern is used to
create a running total of the Sales Amount field by the Date field.

The following code is the DAX expression that was created for this example:

Sales Amount running total in Date =
CALCULATE (
    SUM ( 'Sales'[Sales Amount] ),
    FILTER (
        ALLSELECTED ( 'Date Table'[Date] ),
        ISONORAFTER ( 'Date Table'[Date], MAX ( 'Date Table'[Date] ), DESC )
    )
)

The expression works by using the FILTER and ISONORAFTER functions to
return a table of dates that are less than or equal to the date of the current
row.
The measure then calculates the SUM of Sales Amount for all sales made
on dates that are equal to those returned by this table.

The following code block shows a very similar pattern that could be used to
calculate the same result, but is slightly easier to understand:

Sales Amount running total in Date 2 =
CALCULATE (
    SUM ( 'Sales'[Sales Amount] ),
    FILTER (
        ALLSELECTED ( 'Date Table'[Date] ),
        'Date Table'[Date] <= MAX ( 'Date Table'[Date] )
    )
)

The Cumulative Total pattern we are following here requires that your data model
contains a Date Table that is correctly marked as a date table. The date referred to in
the pattern must be the date column from that Date Table.

Although not strictly necessary, we can enhance the pattern to include a check
that will prevent totals being displayed for any dates that are greater than any
of the dates in the Sales table, as follows:



Sales Amount running total in Date 3 =
IF (
    MIN ( 'Date Table'[Date] )
        <= CALCULATE ( MAX ( Sales[SalesDateKey] ), ALL ( Sales ) ),
    CALCULATE (
        SUM ( 'Sales'[Sales Amount] ),
        FILTER (
            ALLSELECTED ( 'Date Table'[Date] ),
           'Date Table'[Date] <= MAX ( 'Date Table'[Date] )
        )
    )
)

Figure 11-6 shows the table of sales by date extended to include our two
additional measures:

Figure 11-6: Table showing additional versions of year-to-date measures

As you can see, unlike the measures we created using the first two versions of
the pattern, our third measure does not repeat the cumulative total when the
dates go beyond the last date for which we have sales data in the Sales table.



Binning data using segmentation
Next, we are going to look at a DAX pattern that can be used to create a
calculated column to segment data into different groups. Typical examples
include age groups, product groups, and price banding. This process is also
known as value binning, and it is particularly useful when you want to
visualize data using histograms.

In this example, we are going to create a new column in the Products table that
will group products based on the value of the Unit Price field.

The following code is the DAX expression for the new calculated column:

Unit Price Segment =
SWITCH (
    TRUE (),
    'Product'[Unit Price] < 100, "0-99",
    'Product'[Unit Price] < 200, "100-199",
    'Product'[Unit Price] < 300, "200-299",
    'Product'[Unit Price] < 400, "300-399",
    'Product'[Unit Price] < 500, "400-499",
    'Product'[Unit Price] < 600, "500-599",
    'Product'[Unit Price] < 700, "600-699",
    'Product'[Unit Price] < 800, "700-799",
    'Product'[Unit Price] < 900, "800-899",
    "900+"
)

This pattern uses the SWITCH function to create the groupings. Figure 11-7
shows the number of products in each group as a histogram:



Figure 11-7: Binning products by price groups

In this example, the segments display in the correct order. However,
depending on the names of your segment groups, you may also need to create
an additional column to sort the segments by. So, for example, we might create
a unit price band that consists of three segments: Low, Medium, and High.

The following DAX expression would create the segment column:

Unit Price Segment =
SWITCH (
    TRUE (),
    'Product'[Unit Price] < 200, "Low",
    'Product'[Unit Price] < 600, "Medium",
    "High"
)

When used in a visual, these groups would not display in the correct order. To
correct this, we need to create a segment sorting column. The following DAX
expression can be used to create this column:

Unit Price Segment Sort =
SWITCH (
    TRUE (),
    'Product'[Unit Price] < 200, 1,
    'Product'[Unit Price] < 600, 2,



    3
)

The segment column could then be configured to sort by the segment sorting
column so that it displays in the correct order when used with visuals in
reports.



Comparing equivalent periods
We've already looked at some of the time intelligence functions that are
available in the DAX language. However, in this section, we are going look
at how these—and other—functions can be applied to create a range of date
and time patterns.



Comparing previous periods
For the first set of date patterns, we are going to look at some DAX
expressions to create measures that will compare values over equivalent
periods. The first of these will give the total sales quantity for the same
period of the previous year.

The following expression will create a measure called Sales Quantity PY that
will give the total sales quantity for the equivalent date in the previous year:

Sales Quantity PY =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    SAMEPERIODLASTYEAR ( 'Date Table'[Date] )
)

Figure 11-8 shows this measure being used to create a graph showing a
comparison of sales quantity with the same period for the previous year:



Figure 11-8: Comparison of sales quantity  with the same period for the previous year

The Sales Quantity PY measure makes use of the SAMEPERIODLASTYEAR time
intelligence function to obtain the date from the previous year.
However, this does restrict our comparison capability to the previous
year only.
If we want to go back beyond the previous year with our comparisons,
then we need to use a pattern that utilizes the DATEADD function instead.

The following expression will create a measure called Sales Quantity PY + 1
that will give the total sales quantity for the equivalent date 2 years
previously:

Sales Quantity PY + 1 =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    DATEADD( 'Date Table'[Date], -2, YEAR )
)

As we will see with the next two examples, by simply changing the interval
type and the number of intervals through the parameters of the DATEADD function,
we can use this as a pattern to create measures that will calculate the values
for previous quarters and previous months.

For example, the following expression will create a measure called Sales
Quantity PQ that gives the total sales quantity for the equivalent date in the
previous quarter:

Sales Quantity PQ =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    DATEADD( 'Date Table'[Date], -1, QUARTER )
)

Figure 11-9 illustrates how these measures can be used to compare values
against equivalent periods of time:



Figure 11-9: Using measures to compare sales quantity  over different periods of time

Let's complete our set of equivalent period measures using this pattern by
creating a measure to calculate the total sales quantity for the equivalent date
in the previous month, as follows:

Sales Quantity PM =
CALCULATE (
    SUM ( Sales[Sales Quantity] ),
    DATEADD ( 'Date Table'[Date], -1, MONTH )
)

Unfortunately, when it comes to comparing values for weekly periods,
this pattern will not work since the available interval parameter options
are days, months, quarters, and years.
There is no interval option for weeks. Therefore, if we want to compare
values against weeks, then the pattern we need to use will be more
complex.

The following expression uses a pattern for comparing the value of sales
quantity with the previous week:

Sales Quantity PW =
VAR CurrentWeek =
    SELECTEDVALUE ( 'Date Table'[Week Number] )
VAR CurrentYear =
    SELECTEDVALUE ( 'Date Table'[Year] )
VAR MaxWeekNumber =
    CALCULATE (
        MAX ( 'Date Table'[Week Number] ),
        FILTER ( ALL ( 'Date Table' ), 'Date Table'[Year] = CurrentYear )
    )
RETURN



    SUMX (
        FILTER (
            ALL ( 'Date Table' ),
            IF (
                CurrentWeek = 1,
                'Date Table'[Week Number] = MaxWeekNumber
                    && 'Date Table'[Year] = CurrentYear - 1,
                'Date Table'[Week Number] = CurrentWeek - 1
                    && 'Date Table'[Year] = CurrentYear
            )
        ),
        CALCULATE ( SUM ( Sales[Sales Quantity] ) )
    )

This pattern starts by setting variables for the current week, the current year,
and the number of weeks in the current year, based on the row context. It then
calculates the sales quantity for the previous week in the same year, unless it
is week 1. If it is week 1, it calculates the sales quantity for the last week
(MaxWeekNumber) of the previous year.

This completes the set of previous period comparison patterns. Next, we will
look at how we can calculate the period-on-period percentages.



Comparing the period-on-period
percentages
Now that we have some measures to compare values over equivalent
periods, we need a pattern to allow us to calculate the percentage difference
between periods. To help us with this, there are a set of quick measures in
the time intelligence group that will allow us to calculate the following:

Year-over-year change
Quarter-over-quarter change
Month-over-month change

Let's start with the first option, to calculate the year-over-year percentage
change. If we provide the Sales Quantity from the Sales table as the base
value and Date from Date Table and specify 1 for the period, it will generate
DAX code that we can use for our pattern.

The following expression will create a measure called Sales Quantity
YoY%. This will give the percentage change between the total sales quantity
for a given date and the equivalent date in the previous year, as follows:

Sales Quantity YoY% =
VAR __PREV_YEAR =
    CALCULATE (
        SUM ( 'Sales'[Sales Quantity] ),
        DATEADD ( 'Date Table'[Date], -1, YEAR )
    )
RETURN
    DIVIDE ( SUM ( 'Sales'[Sales Quantity] ) - __PREV_YEAR, __PREV_YEAR )

Figure 11-10 shows this measure being used to compare sales quantities
year-over-year:



Figure 11-10: Comparing sales quantity  year-over-year

We can use the same pattern to create measures that give the quarter-over-
quarter percentage change and the month-over-month percentage change.

The following expression will create a measure to calculate the quarter-
over-quarter percentage change:

Sales Quantity QoQ% =
VAR __PREV_QUARTER =
    CALCULATE (
        SUM ( 'Sales'[Sales Quantity] ),
        DATEADD ( 'Date Table'[Date], -1, QUARTER )
    )
RETURN
    DIVIDE ( SUM ( 'Sales'[Sales Quantity] ) - __PREV_QUARTER, __PREV_QUARTER )

The following expression will create a measure to calculate the month-over-
month percentage change:

Sales Quantity MoM% =
VAR __PREV_MONTH =
    CALCULATE (
        SUM ( 'Sales'[Sales Quantity] ),
        DATEADD ( 'Date Table'[Date], -1, MONTH )
    )
RETURN
    DIVIDE ( SUM ( 'Sales'[Sales Quantity] ) - __PREV_MONTH, __PREV_MONTH )

The only difference between the three measures in this group is the interval
given as the third parameter of the DATEADD function.

This completes the set of patterns for calculating the period-on-period
percentage changes. Next, we will look at a set of patterns for calculating
period-to-date totals.



Calculating period-to-date totals
The patterns in this section make use of the time intelligence functions
TOTALMTD, TOTALQTD, and TOTALYTD. We'll also look at a pattern for creating a DAX
measure to calculate a week-to-date total. Let's start with a measure that will
give us a running total of sales quantity for the month to date.

The following expression uses the TOTALMTD function to create a measure that
calculates a running total of sales quantity for the month to date:

Sales Quantity MTD =
TOTALMTD (
    SUM ( 'Sales'[Sales Quantity] ),
    'Date Table'[Date]
)

The following expression uses a very similar pattern to create equivalent
measures for the sales quantity totals for the quarter to date and year to date.
This expression uses the TOTALQTD function to create a measure that calculates a
running total of sales quantity for the quarter to date, as follows:

Sales Quantity QTD =
TOTALQTD (
    SUM ( 'Sales'[Sales Quantity] ),
    'Date Table'[Date]
)

The following expression uses the TOTALYTD function to create a measure that
calculates a running total of sales quantity for the year to date:

Sales Quantity YTD =
TOTALYTD (
    SUM ( 'Sales'[Sales Quantity] ),
    'Date Table'[Date]
)

The only difference between these three measures is the time
intelligence function used.
However, as with the previous period patterns, there is no time
intelligence function to calculate week to date.



When it comes to calculating the total for the week to date, then the
pattern is more complicated.

The following expression follows a pattern for calculating a running total of
sales quantity for the week to date:

Sales Quantity WTD =
VAR CurrentDate =
    LASTDATE ( 'Date Table'[Date] )
VAR DayNumberOfWeek =
    WEEKDAY (
        CurrentDate,
        3
    )
RETURN
    CALCULATE (
        SUM ( Sales[Sales Quantity] ),
        DATESBETWEEN (
            'Date Table'[Date],
            DATEADD (
                CurrentDate,
                -1 * DayNumberOfWeek,
                DAY
            ),
            CurrentDate
        )
    )

The pattern starts by setting a variable for the current date.
It then sets a variable for the day number of the week. For this, it uses
the WEEKDAY function, with a value of 3 being passed as the return type
parameter, to specify that the week starts on a Monday, with a day
number of 0.
Finally, in the return part of the expression, it calculates the sales
quantity for the days between the start of the current week and the
current date.

This completes the set of patterns for calculating period-to-date totals and
our overall look at patterns for comparing values of equivalent periods. In
the next section, we are going to finish off our look at DAX patterns with
some examples of mathematical patterns.



Working with mathematical
patterns
We are going to round off this chapter with a look at some examples of
mathematical patterns, both simple and complex.

The following examples are based on the measures included in the
Mathematical operations section of the Quick Measures feature found in
Power BI Desktop:

1. First, we have some examples of basic mathematical operation patterns,
starting with an expression that will create a measure using the addition
pattern:

Sales Amount plus Sales Tax =
SUM ( 'Sales'[Sales Amount] ) + SUM ( 'Sales'[Sales Tax] )

2. The following expression will create a measure that uses the subtraction
pattern:

Sales Amount minus Discount Amount =
SUM ( 'Sales'[Sales Amount] ) - SUM ( 'Sales'[Discount Amount] )

3. The following expression will create a measure that uses the
multiplication pattern:

Unit Price x Sales Quantity =
SUM ( 'Sales'[Unit Price] ) * SUM ( 'Sales'[Sales Quantity] )

4. Finally, we have an expression that will create a measure that uses the
division pattern:

Sales Amount divided by Sales Quantity =
DIVIDE ( SUM ( 'Sales'[Sales Amount] ), SUM ( 'Sales'[Sales Quantity] ) )

5. Next, we have a couple of patterns that will calculate the percentage
difference between two values. We'll start with an expression that will



create a measure to calculate the percentage difference between the total
sales amount and the total return amount, as follows:

Return Amount % difference from Sales Amount =
VAR __BASELINE_VALUE = SUM ( 'Sales'[Sales Amount] )
VAR __VALUE_TO_COMPARE = SUM ( 'Sales'[Return Amount] )
RETURN
    DIVIDE ( __VALUE_TO_COMPARE - __BASELINE_VALUE, __BASELINE_VALUE )

6. With this measure, blanks are treated as zeros in the calculation.
However, in the following example, the pattern is amended so that
blanks will produce blanks in the output:

Return Amount % difference from Sales Amount 2 =
VAR __BASELINE_VALUE = SUM ( 'Sales'[Sales Amount] )
VAR __VALUE_TO_COMPARE = SUM ( 'Sales'[Return Amount] )
RETURN
    IF (
        NOT ISBLANK ( __VALUE_TO_COMPARE ),
        DIVIDE ( __VALUE_TO_COMPARE - __BASELINE_VALUE, __BASELINE_VALUE )
    )

7. For the final mathematical pattern, we are going to look at a more
complex operation. The following expression will create a measure that
will calculate the Pearson Correlation Coefficient (PCC) over a
given category:

Sales Quantity and Return Quantity correlation for Color =
VAR __CORRELATION_TABLE =
    VALUES ( 'Product'[Color] )
VAR __COUNT =
    COUNTX (
        KEEPFILTERS ( __CORRELATION_TABLE ),
        CALCULATE ( SUM ( 'Sales'[Sales Quantity] ) * SUM ( 'Sales'[Return 
Quantity] ) )
    )
VAR __SUM_X =
    SUMX (
        KEEPFILTERS ( __CORRELATION_TABLE ),
        CALCULATE ( SUM ( 'Sales'[Sales Quantity] ) )
    )
VAR __SUM_Y =
    SUMX (
        KEEPFILTERS ( __CORRELATION_TABLE ),
        CALCULATE ( SUM ( 'Sales'[Return Quantity] ) )
    )
VAR __SUM_XY =
    SUMX (
        KEEPFILTERS ( __CORRELATION_TABLE ),
        CALCULATE (
            SUM ( 'Sales'[Sales Quantity] ) * SUM ( 'Sales'[Return Quantity] 



) * 1.
        )
    )
VAR __SUM_X2 =
    SUMX (
        KEEPFILTERS ( __CORRELATION_TABLE ),
        CALCULATE ( SUM ( 'Sales'[Sales Quantity] ) ^ 2 )
    )
VAR __SUM_Y2 =
    SUMX (
        KEEPFILTERS ( __CORRELATION_TABLE ),
        CALCULATE ( SUM ( 'Sales'[Return Quantity] ) ^ 2 )
    )
RETURN
    DIVIDE (
        __COUNT * __SUM_XY - __SUM_X * __SUM_Y * 1.,
        SQRT ( ( __COUNT * __SUM_X2 - __SUM_X ^ 2 ) * ( __COUNT * __SUM_Y2 - 
__SUM_Y ^ 2 ) )
    )

In this example, the measure calculates the correlation coefficient between
Sales Quantity and Return Quantity over the given color of a product.

If you want to find out more about the PCC, check out the following article:
https://blog.gbrueckl.at/2015/06/calculating-pearson-correlation-coefficient-dax/.

Although that concludes our brief look at DAX patterns, you'll find plenty
more examples on the internet that will help you to broaden your knowledge
on this subject. By following established patterns, you will create more
reliable and accurate measures and calculated columns using DAX code.

https://blog.gbrueckl.at/2015/06/calculating-pearson-correlation-coefficient-dax/


Summary
In this chapter, we learned about creating measures and columns, following
the software engineering principle of coding patterns, and how they can turn
your DAX code into templates for more reliable and reusable solutions.

We started with an introduction to the Quick Measures feature in Power BI
Desktop. We looked at how this feature can be used as a quick and easy way
to create DAX measures, without needing to know any DAX code. We saw
how it uses predefined DAX patterns that are modified using the responses
provided through the Quick Measures dialog.

Having explored the Quick Measures feature, we looked at examples of
DAX patterns being used in a number of different areas, including some of
those created by using Quick Measures.

In the next chapter, we'll start our look at performance and optimization,
starting with a look at how we can optimize our data models.



Section 3: Taking DAX to the Next
Level
This section comprises some more advanced DAX topics, including a more
in-depth look at data model optimization. You'll also take the hood off DAX
by looking at the storage engine and how you can use this knowledge to
optimize your DAX queries:

Chapter 12, Optimizing Your Data Model
Chapter 13, Optimizing Your DAX Queries



Optimizing Your Data Model
In Chapter 3, Building Data Models, we looked at the importance of building
a well-structured data model. In this chapter, we'll take the practice of data
modeling one step further by learning about some of the techniques behind
data model optimization. As a tabular data model resides in random-access
memory (RAM), reducing its memory requirement is a major consideration
in the overall design process.

We will start this chapter with an introduction to the VertiPaq compression
engine. We'll look at what it is and how it works, and how this knowledge
can help when it comes to optimizing the data in our data models. We'll
investigate data profiling and how this can help identify what sort of data we
should include in our data models, and we'll look at some of the tools
available that can help with this process.

Then, we'll learn about some of the ways we can simplify the structure of our
data models with a focus on column cardinality, column storage, and some
ideas on identifying the correct columns to store. Finally, we'll round off this
chapter with a look at the benefits of using summary tables.

The chapter is broken into the following sections:

Introducing the VertiPaq engine
Understanding your data model
Simplifying your data model
Creating summary tables



Introducing the VertiPaq engine
The VertiPaq engine is an in-memory columnar database that sits behind
Excel Power Pivot, SQL Server Analysis Services (SSAS) Tabular, and
Power BI. When you load data into a data model, it is loaded, compressed,
and stored in RAM using the VertiPaq engine. You may also see it referred to
by its newer official name, the xVelocity engine, but it is still widely known
by the code name used during its development, and this is how we will refer
to it in this book.

Understanding how this database engine processes data when it is loaded
into a data model, even at a basic level, is essential if you want to build
efficient data models.

The VertiPaq engine is only relevant when you are importing data into a data model.
If you are using DirectQuery to connect to your data, then the VertiPaq engine is
not used.

With a traditional database, data is stored in tables, each consisting of a set
of rows. Each row is then split into a number of columns that represent
individual data items. Figure 12-1 shows a cut-down version of the Product
table from our data model, structured as we might imagine it with a
traditional database:

Figure 12-1: A traditional database table

If you wanted to run a query against this table to find all the silver-colored
products, then a traditional database would need to scan all the columns of



all the rows to find the answer. This isn't a problem when the table has a
small number of rows and a small number of columns, as with our preceding
example. However, it can become an issue when dealing with a table that has
millions of rows and a large number of columns. In this case, our query
would result in the database reading and discarding many millions of data
items that are not required.

With the VertiPaq engine, data is stored differently. It is a columnar database,
and, as such, when data is loaded, each column is stored within its own table
structure. Taking the Product table from the previous example, a columnar
database would store the data as shown in Figure 12-2:

Figure 12-2: An example of a columnar database structure

As we can see, each column of the original table is stored as a physically
separate table. Now, if we wanted to find all the silver-colored products, the
database would only need to scan down the table for the Color column.

If we wanted to take our query one step further to find the unit costs of all
silver-colored products, then the database only needs to scan for those
products using the Color column, retrieve the row ID, and then look up the
unit costs for the corresponding row IDs in the Unit Cost column. Where we
have a large table, the potential time saved using this much more efficient
process can be considerable.

In addition to storing the data in our data model in a different way, the
VertiPaq engine also tries to reduce the memory requirement by compressing
data as it is loaded into a data model. It attempts to compress data using the
following algorithms:



Value encoding
Dictionary encoding
Run-length encoding (RLE)

Data compression is important, not only because it reduces the amount of
RAM required to store a data model, but also because it has the potential to
improve overall performance.



Value encoding
When a column contains a number, it will apply the value encoding algorithm
to attempt to reduce the number of bits required to store each number. To do
this, it will look for a mathematical relationship between the values in the
column, which it then uses to transform the values, using fewer bits. When
accessing the values in the column, the engine has to apply the opposite
transformation, which requires additional processing. However, this is an
acceptable trade-off when considering the reduction in memory usage and the
reduced number of reads this method of encoding offers.

To illustrate how this form of compression works, let's look at a simple
example, which uses subtraction to transform the original values of a column.
Suppose, for example, that our Product table also includes a value for the
minimum stock level. If the maximum value in this column is 50, then it
requires 6 bits to store each value. However, if the minimum value in this
column is 40, then the VertiPaq engine could reduce this requirement to just 4
bits by subtracting 40 from each value in the column.

Figure 12-3 gives an illustration of the value encoding process:

Figure 12-3: The value encoding process



When retrieving the values from the column, the original value is obtained by
adding 40 back to the value retrieved. As we already mentioned, this process
does require some additional CPU usage. It will also only work on columns
that contain integers. It does not work with floating-point or text values. To
encode columns that contain text and floating-point values, the VertiPaq
engine will use dictionary encoding.



Dictionary encoding
As with value encoding, the purpose of dictionary encoding is to reduce the
number of bits required to store the values in a column. Dictionary encoding
starts by building a dictionary table that contains a set of distinct values in a
column. It then replaces the original values of a column with an integer
number that references the index of the original value in the dictionary table.

The dictionary-encoding process is illustrated in Figure 12-4:

Figure 12-4: The dictionary-encoding process

There are two key advantages of using dictionary encoding, as follows:

All columns contain only integer values.
The number of bits required to store values in a column equals the
minimum number of bits required to store the ID values in the dictionary
table.

The number of bits required to store the ID value in the dictionary table—
and, hence, the number of bits required to store the values of a column—
depends on the number of distinct values in a column. As such, the number of
distinct values in a column (also known as its cardinality) is a very important
factor when designing a data model. We will look at this subject in more
detail in the next section when we look at understanding your data model.



RLE
Instead of being an additional method of encoding, RLE is used as a method
of compression complementary to dictionary encoding and value encoding.
Once a column has been compressed using one of these two methods, it
attempts to compress the size of the column further by reducing the number of
duplicated values it contains.

Let's demonstrate this with an example. From our Product table, we have a
column that contains the class of a product. First, VertiPaq will attempt to
compress the memory requirement of this column using dictionary encoding.
We are then left with a column that contains values that are repeated over
many contiguous rows. At this point, VertiPaq compresses the column further
by applying RLE.

Figure 12-5 illustrates how the RLE process works. The VertiPaq engine
replaces the existing column with a new structure. The new structure contains
each repeated value just once, along with the number of contiguous rows that
contain that value:

Figure 12-5: The RLE process



In the example shown in Figure 12-5, the first 15 products are in the
Economy class. These are then followed by 21 products in the Regular
class, four products in the Deluxe class, and another five products in the
Regular class. These rows are encoded in a new column structure, which
contains the dictionary ID and the number of contiguous rows that contain
values relating to that dictionary ID.

VertiPaq will also apply RLE to value-encoded columns. However, unlike in
the preceding example, a dictionary table is not required as the column has
already been encoded with value-encoded integers.

The efficiency of this process is dependent on how the values repeat
throughout the column. If values repeat for many contiguous rows, then
compression will be high. However, if values change frequently, then
compression will be lower. If values change too frequently, the compressed
column may end up requiring more space than the original. If this happens,
VertiPaq will skip the RLE process and will store the original column
instead.

Obviously, the sort order and cardinality of a column may have a significant
impact on the efficiency of RLE compression, and we will look at these in
more detail in the next section.



Understanding your data model
There are a few tools available that will help you to understand your data
model in more detail. Some of these are third-party tools, but if you are
working with a version of Power BI Desktop released after October 2018,
then the Power Query Editor comes with excellent data profiling capabilities
built in. In this section, we're going to look at these and how they can be used
to help you better understand the data that you are working within your data
model.



Data profiling with Power BI
Desktop
To access the data profiling capabilities in Power BI Desktop, we need to
open the Power Query Editor. The easiest way to do this is by clicking on the
Edit Queries button in the External data section of the Home ribbon, as shown
in Figure 12-6:

Figure 12-6: Editing queries

This opens the Power Query Editor, where we can work on the data loading
process for our data model. Figure 12-7 shows the Power Query Editor
screen:



Figure 12-7: The Power Query editor screen in Power BI Desktop

On the left-hand side of the screen, we can see the current list of tables to
which we are connected. In the middle is a view of the columns available in
the currently selected table. Finally, on the right-hand side, we can see a list
of steps that have been applied to the currently selected table, which will be
applied when data from the table is loaded into our data model.

Just underneath the heading of each column is a green-colored bar. This
indicates the quality of the data in each individual column. If you hover over
the bar, you will see a popup that gives a breakdown of the data quality. It
shows how many rows have valid data, how many have errors, and how many
have missing values, as can be seen in Figure 12-8:



Figure 12-8: The data quality  popup dialog

If there are any errors, then the bar will have a proportion colored red,
depending on the percentage of overall rows that contain errors. Power Query
will not profile columns with errors, beyond flagging the number and
percentage of rows that contain erroneous values, as shown in Figure 12-9:

Figure 12-9: The data errors indicator bar

If you click on the Remove Errors option, then Power Query will apply an
additional Removed Errors step to the APPLIED STEPS section of the editor.
This will remove from the data loading process any rows that are causing
errors.

If there are any rows with missing values, these will be shown as a black
section of the green bar. Again, the size will depend on the percentage of rows
with data missing, and there will be an option to remove these rows from the
data load, as shown in Figure 12-10:



Figure 12-10: The missing data indicator bar

If you click on the Remove Empty option, then Power Query will apply an
additional Filtered Rows step to the APPLIED STEPS section of the editor.
This will filter out from the data loading process any rows that contain
missing values.

In addition to the popup showing data quality details, you can add these as an
expanded section to the header of each column, as shown in Figure 12-11:

Figure 12-11: The data quality  column header

To enable this view, tick the Column quality checkbox in the Data Preview
section of the View ribbon, as shown in Figure 12-12:

Figure 12-12: Enabling the data quality  column header



In addition, in this section of the View ribbon, there are checkboxes labeled
Column distribution and Column profile that enable additional views. Let's
start by looking at the Column distribution view. Tick the Column distribution
checkbox to enable the view; you will see a new section has been added to
the header of each column.

As we can see in Figure 12-13, the header of each column now has a small
bar chart that shows the distribution of values in the column. It also shows the
number of distinct values and the number of unique values contained in the
column:

Figure 12-13: The column distribution bar chart

As we have seen already when looking at the VertiPaq engine, and as we shall
see again in the next section, these two values are important when you are
looking at what data to include in your data model. Non-integer columns that
contain a large number of distinct values will require more memory than those
with fewer values as the dictionary that VertiPaq creates will be larger. The
lower the number of unique values, then the greater the chance that the column
will contain repeating values over contiguous rows, improving the efficiency
of compression through RLE.

In theory, when selecting data to load into your data model, you want to avoid
columns that contain a high number of distinct values and a high number of



unique values. In practice, this may not always be possible, but it is a good
indicator when exploring your data.

The final view that we're going to look at is the Column profile view. To
enable this view, tick the Column profile checkbox in the Data Preview
section of the View ribbon. This will add a new view to the bottom of the
table display, as shown in Figure 12-14:

Figure 12-14: The column profile view

As you can see, this view not only gives a more detailed view of how values
are distributed throughout the column but also gives an expanded set of
statistical data. In addition, you can right-click on any of the columns in the
Value distribution chart and filter on values or replace values, adding an
additional step to the APPLIED STEPS section.



Data profiling in SSAS Tabular and
Excel Power Pivot
If you are not using Power BI Desktop, then there are other tools you can use
to profile data in your data model.

If you are working with SSAS Tabular, then you can use SQL Server
Management Studio (SSMS) to connect to the Analysis Services database
and query your data model. You can also use a couple of excellent third-party
tools called DAX Studio and VertiPaq Analyzer.

If you want to try out DAX Studio, then you can find more details at:
https://daxstudio.org

If you want to try out VertiPaq Analyzer, then you can find more details at:
https://www.sqlbi.com/tools/vertipaq-analyzer/

Using either SSMS or DAX Studio gives you access to Dynamic
Management Views (DMV). The DMVs give you a way to see how data in
your data model is compressed. They give you details of how space is being
used by tables and columns.

The following DMVs are particularly useful for exploring the data in your
data model:

DISCOVER_OBJECT_MEMORY_USAGE

DISCOVER_STORAGE_TABLES

DISCOVER_STORAGE_TABLE_COLUMNS

DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS

Figure 12-15 shows an example of DISCOVER_STORAGE_TABLES DMV being queried
using DAX Studio:

https://daxstudio.org/
https://www.sqlbi.com/tools/vertipaq-analyzer/


Figure 12-15: DAX Studio being used to query a DM V

DAX Studio is also able to connect to an Excel Power Pivot data model and
gives you a good way to access and explore data if your data model is in
Excel.



Simplifying your data model
In Chapter 3, Building Data Models, we looked at the process of building a
data model in some detail. In this section, we will revisit some of the topics
we covered, along with what we have just learned about the workings of the
VertiPaq engine. Using this combined knowledge, we will focus on some of
the ways in which we can optimize the overall memory requirements of our
data models and improve performance.

As we saw in the previous section, VertiPaq's ability to compress data is
dependent on several factors. As such, there are some elements that you need
to consider when building a data model that will have a direct impact on the
efficiency of the compression algorithms. These include the following:

The cardinality of values in a column. This affects VertiPaq's ability to
reduce the number of bits used to store a value. If a column has low
cardinality, then the dictionary size will be much smaller. Also,
consider the granularity of data. If you use a higher granularity than you
need—for example, if you are storing date and time when you only need
the date—then you will have a much larger column dictionary than you
need.
The number of values repeated in contiguous rows in a column. A
column that contains values repeated over many contiguous rows will
achieve greater compression than a column that contains frequently
changing values.
The sort order of rows in a table. Although VertiPaq's algorithms will
search for the best sort order as part of the compression process, they
will consider the physical order of the rows received.
The number of rows in a table. Do you need all of the data, or can it be
filtered before loading?
The data type of a column. However, this will only influence the
dictionary size, so is not relevant for value encoding.

In addition, there are some more general rules that you should follow when
building a data model, which will help to reduce the model's overall memory



requirement, as follows:

Understand your source data.
Keep your data model as simple as possible.
Use a star schema over a snowflake schema.
Merge and append tables to simplify the data model.
Only import rows and columns that are needed in the model.
Ensure columns are defined with the correct data type.
Create measures instead of calculated columns, where possible.

Let's look at these rules in a bit more detail.



Understanding your source data
The first step in understanding a data model is to collect some information
about the data we have in the data sources from which we will be importing.
Specifically, we need to look at the following:

The number of rows in the tables
The number of distinct and unique values in each column
Details of any hierarchies
The number and complexity of relationships
The data needed for our analysis

Of these points, the most important is the number of distinct values in each
column, also referred to as column cardinality (as opposed to relationship
cardinality, which we looked at in Chapter 3, Building Data Models). As we
have seen, column cardinality has an impact on the size of the dictionary
created by VertiPaq when it carries out dictionary encoding on a column. The
higher the cardinality of a column, the more rows will be stored in a
dictionary, and the bigger the size. If you only have a few unique values, then
the size of the dictionary will be much smaller, and VertiPaq will be able to
achieve a much higher compression ratio.



Keeping your data model simple
Although it is possible to create a very complex data model that contains
hundreds of tables with many relationships, there are several reasons why
you should avoid this. Firstly, you will end up with a very large field list,
making the data model difficult to work with and prone to errors. Even with
good compression, a large data model will use excessive amounts of memory
and will suffer from poor performance. A large and complicated data model
will also make it extremely difficult to write and troubleshoot DAX queries.

Unlike the design of a traditional relational database, where the data
structure is highly normalized, we should look to denormalize data when
designing a tabular data model. Each table and associated relationship have
cost overheads in terms of memory and the passing of filters between tables.
Although the best performance might be obtained from a model that uses a
single flattened table, this would, in practice, be difficult to use. A more
realistic approach would be to design a data model that uses a star schema.



Using a star schema
In Chapter 3, Building Data Models, we looked at some of the virtues of using
a star schema. With a star schema, the data model consists of a denormalized,
or flattened, fact table that sits at the center. This contains the numerical data
that we use with measures, on which to base our analysis. Each entity in this
table is then connected to lookup or dimension tables that are arranged around
the fact table to create the classic star shape. Figure 12-16 shows an example
of this style of data model, and illustrates why it is known as a star schema:



Figure 12-16: A start schema based data model

You may also have a data model where there are dimension tables that are
related to other dimension tables, in the form of a hierarchy chain. For
example, there might be a product table that is related to a product category



table and a brand table. This style of schema is known as a snowflake schema
as it resembles a simple snowflake in shape.



Merging and appending tables
You should look to simplify your data model by merging or appending tables
where possible. For example, you may have a data source that contains a
different table of data for each year. In such a case, you would append the
data into a single table as part of the data loading process.

You may find that your data model resembles a snowflake schema. For
example, if you pull tables in from a relational database, you might have a
product table that has relationships with tables such as product category,
color, brand, and class. In a relational database, this structure avoids
duplication of data in columns. However, as we have seen already, the
VertiPaq engine will automatically create a dictionary for each column,
which avoids the memory cost of having duplicated values in a column. We
should denormalize the tables that make up the outer edges of the snowflake
by merging them together to form a single dimension table.

You may occasionally have tables in your data model that have a one-to-one
relationship. With these, you should flatten the data model by merging the
tables into one.



Importing required rows and
columns only
You will find that many tables in a database contain data gathered over long
periods of time, or contain information for areas not required for a particular
report. Always filter out historical or unrelated data as part of the data
loading process. If you filter out data in your report after it has been loaded,
it is still using valuable memory and making your data model larger than it
needs to be.

If you have access to the source database, then consider using views to
exclude unnecessary rows of data. This will also speed up the data loading
process.

When you are building your data model, look at each column and ask whether
it is necessary to include it. If it doesn't contribute to the required analysis,
do not include it, especially if the values have a high cardinality. Missing
columns can easily be added later if you find they are subsequently required.

If you are importing data from a data warehouse, then you will often find
multiple date fields that are created by the Extract, Transform, and Load
(ETL) process to record when the row was created, last updated, or when
the ETL process last ran. These are rarely needed in a data model and should
be excluded from the data model during the load process.

While primary keys may be needed for dimension tables, to create the
necessary relationships, they are usually excluded from fact tables. Primary
key columns contain unique values, and will not compress very effectively. If
you have a fact table with millions of rows, this will consume a large amount
of memory unnecessarily.

Similarly, look out for Autonumber columns, columns used as an IDENTITY,
or columns that contain globally unique identifiers (GUIDs). These types of



columns will all contain highly unique values and will suffer from low
compression ratios. Only include these where you know they will be needed
for analysis purposes.



Using the correct data type
Always ensure that you define columns in your data model with the correct
data type. Certain data types use more memory than others. Where possible,
use integers in place of strings, and use dates instead of datetimes. If your
data model contains times, only store to the necessary granularity that is
really needed. Times stored down to milliseconds require much more
memory than times only stored down to minutes. If you don't need to store the
time at all, then ensure you use the date data type instead.

You should also look at the possibility of splitting columns. For example, if
you do need to include time in your analysis, then you could split a
DateTime column into the separate date and time columns. This should be
done at source or during the data loading process, and not by using calculated
columns, as this would only increase the memory overhead.

Finally, consider the granularity of a column. Storing time at the hour level
would result in 24 unique values, while storing down to the millisecond
would give you 86,400,00 unique values. Remember that the greater the
granularity of the values in a column, the higher the cardinality, and the lower
the compression ratio that can be achieved for storing the values in that
column. The other advantage of a lower granularity is that you are more
likely to have repeated values over contiguous rows, further improving the
chances of a higher compression ratio.

Do not be tempted to reduce the granularity of dates, such as having a single
date for each month. The time intelligence functions in DAX rely on a
complete set of calendar dates, and reducing the granularity of dates in this
manner would prevent these from working correctly.



Using measures instead of
calculated columns
A calculated column will take up more memory than a standard column.
Wherever possible, you should avoid having too many calculated columns in
your data model. Also, consider ways in which a measure may be used to
replace standard and calculated columns. For example, in our Sales table,
we have Unit Price, Sales Quantity, and Sales Amount columns. However,
the Sales Amount column could be replaced by a measure. This measure
would make use of the Unit Price and Sales Quantity columns to calculate the
sales amount value.

The following DAX expression would create a measure that could be used to
replace the Sales Amount column in the Sales table in our data model:

SalesAmountMeasure =
SUMX (
    Sales,
    ( Sales[Sales Quantity] * Sales[Unit Price] ) - Sales[Discount Amount]
)

With the Sales table containing well over 2 million rows, this has the
potential to make a difference to the memory requirement of our data model.
Alternatively, if we only want to do an analysis using the Sales Amount and
are not interested in Sales Quantity or Unit Price, then it would make more
sense to retain the Sales Amount column and remove the Sales Quantity and
Unit Price columns instead.

One instance where you might consider using a calculated column to improve
performance is where you have a measure that uses a logical expression,
based on a column with high cardinality. For example, let's take the
following measure:

HighSalesAmountCount1 =
COUNTROWS (
    FILTER (



        Sales,
        Sales[Sales Quantity] * RELATED ( Product[Unit Price] ) >= 20000
    )
)

This measure counts the number of rows in the Sales table where the Sales
Quantity multiplied by the Unit Price from the related product in the Product
table is greater than or equal to 20,000. As the Sales table has over 2 million
rows, this filter iteration is a potentially expensive process.

However, we can convert the filter expression into a calculated column using
the following expression:

HighSalesColumn =
Sales[Sales Quantity] * RELATED ( 'Product'[Unit Price] ) >= 20000

Now, we have a calculated column that contains just two unique values of
TRUE or FALSE. We can use this new column to revise our previous measure,
using the CALCULATE function, to apply a filter with it.

The following is the expression used for the revised measure:

HighSalesAmountCount2 =
CALCULATE (
    COUNTROWS ( Sales ),
    Sales[HighSalesColumn] = TRUE
)

As this revised measure applies a direct filter to the Sales table at execution
time, it should be more efficient than the original version of the measure
when queried.



Creating summary tables
In the last section of this chapter, we're going to take a look at another way
you can optimize your data model, through the use of summary tables.
Although the use of summary tables will not necessarily help to reduce the
size of your data model in terms of memory usage, they are a great way to
improve performance, especially if your data model contains large tables with
millions of rows. Any visual that uses a summary table will potentially be
much faster than if it were working directly with a larger native table.

There are a couple of ways to create summary tables. If you have access to the
source database, then you can create summary tables at the source using SQL
views. This has the advantage that, if not needed for analysis, you do not need
to import the larger table on which the views are based. If you don't need to
import the larger table into your data model, then you may be able to reduce
its overall memory requirement.

However, if you don't have access to the source database, or you still need to
load the large tables into your data model, you can create summary tables by
using calculated tables. You can create aggregation summary tables using the
SUMMARY or GROUPBY functions. Alternatively, you can create summary tables that
contain subsets of data using the FILTER function.

Let's look at summary tables with some hands-on examples. We'll start by
creating an aggregation summary table using the GROUPBY function with the Sales
table from our data model.

Before we start, the syntax for the GROUPBY function is as follows:

GROUPBY ( <Table> [, <GroupBy_ColumnName> [, [<Name>] [, [<Expression>] [,

<GroupBy_ColumnName> [, [<Name>] [, [<Expression>] [, … ] ] ] ] ] ] ] )

In the following example, we will create a summary table that aggregates the
Total Sales Quantity and the Total Sales Amount for each product, by date.



For this, we will create a calculated table using the following DAX
expression:

Sales by Date =
GROUPBY (
    Sales,
    Sales[SalesDateKey],
    Sales[ProductKey],
    "Total Sales Quantity", SUMX ( CURRENTGROUP (), 'Sales'[Sales Quantity] ),
    "Total Sales Amount", SUMX ( CURRENTGROUP (), 'Sales'[Sales Amount] )
)

This gives the result shown in Figure 12-17:

Figure 12-17: Creating a summary table



Next, let's create a subset of the Sales table, showing only sales for red
products. We can do this using the FILTER function by using the Sales and
Product tables.

The syntax for the FILTER function is as follows:

FILTER ( <Table>, <FilterExpression> )

In the following example, we will create a summary table that only shows
Sales for related products in the Product table, where the color is Red. For
this, we will create a calculated table using the following DAX expression:

Sales (Red Products) =
FILTER (
    Sales,
    RELATED ( 'Product'[Color] ) = "Red"
)

Finally, we can combine these two ideas to create a summary table, based on
a subset of data. In this case, it is the Total Sales Quantity and the Total Sales
Amount for each product, by date, for red products only. For this, we will
create a calculated table using the following DAX expression:

Sales (Red Products) by Date =
GROUPBY (
    FILTER ( Sales, RELATED ( 'Product'[Color] ) = "Red" ),
    Sales[SalesDateKey],
    Sales[ProductKey],
    "Total Sales Quantity", SUMX ( CURRENTGROUP (), 'Sales'[Sales Quantity] ),
    "Total Sales Amount", SUMX ( CURRENTGROUP (), 'Sales'[Sales Amount] )
)

Here, we have used some very simple examples to illustrate the concept of
summary tables. However, depending on the requirements, the DAX
expressions used to create summary tables can become quite complex.



Summary
In this chapter, we learned about some of the techniques we can use to help
us optimize our data models. We learned that reducing a data model's
memory requirement is a major consideration in the overall design process.

We started off by learning about the VertiPaq compression engine. We looked
at what it is and how it works, and why this knowledge is essential if we
want to effectively optimize our data models. Next, we learned about data
profiling, and how this can help us identify what data to include in a data
model. This included a look at the data profiling capabilities of Power BI
Desktop, along with some other tools that are available to help with this
process.

We then learned about some of the ways we can simplify the structure of our
data models looking at column cardinality, column storage, and identifying
the correct columns to store. Finally, we looked at the benefits of using
summary tables, along with some examples.

In the final chapter of this book, we'll complete our learning by looking at
ways in which we can optimize our DAX queries. We'll start by looking at
some of the tools that are available and how these can help us with our query
optimization.



Optimizing Your DAX Queries
For the last chapter in this book, we are going to look at some of the
techniques and tools you can use to analyze DAX query performance and
identify potential problems.

We will start this chapter by learning about the storage engine and the
formula engine. These are the two engines that are used to resolve DAX
queries. We'll look at how these engines work together to retrieve data from
the data model and return a result. We'll also learn how this knowledge can
help to identify and resolve performance issues with DAX queries.

We will then look at some of the tools we can use to investigate the
performance of DAX queries. These include DAX Studio, the SQL Server
Profiler, and the Performance Analyzer feature in Power BI Desktop. We'll
learn how to use these tools and how they can help to find potential
bottlenecks and performance issues with our queries.

This chapter is broken down into the following sections:

Introduction to the DAX calculation engines
Monitoring performance with DAX Studio
Using SQL Server Profiler
Using Power BI Performance Analyzer



Introduction to the DAX calculation
engines
Before we start looking at using tools to help us to optimize our DAX
queries, we need to understand a little bit about the tabular query engine
architecture.

When you execute a DAX query using the in-memory mode, it uses two
different engines to run the calculations and come back with a result. These
two engines are known as the Formula Engine (FE) and the Storage Engine
(SE), and they work together in different roles to calculate the result of DAX
queries.

If you execute a DAX query using DirectQuery mode, then the query engine simply
coverts the DAX into a SQL statement and sends it to be executed by the external
SQL Server. The query engine does no further work other than return the query
result that it receives back from SQL Server.

When a DAX query is executed, a combination of the function engine and the
storage engine is used to resolve the query and return an answer. In the
process, the following steps are taken:

1. The query is transformed into an expression tree.
2. A logical query plan, containing the set of logical operations needed to

execute the query, is produced.
3. The logical query plan is transformed into a physical query plan,

containing the set of physical operations needed.
4. The physical query plan is executed, and data is retrieved from the

storage engine, allowing the result of the query to be calculated.

Steps 2 and 3 are particularly important when it comes to optimizing DAX
queries. It is these steps that produce the plans that we can read, allowing us
to understand how the query engine resolves our queries. In later sections of



this chapter, we will look at some of the tools available to help us to obtain
and read these logical and physical query plans.



The formula engine
When your DAX query is executed, it is initially processed by the formula
engine. It processes each of the steps presented by the physical query plan
and can, therefore, resolve complex DAX expressions. When an operation in
the physical query plan requires data from the data model, it passes a request
to the storage engine. This is where the two engines begin their interaction in
resolving DAX queries.

The formula engine is single-threaded, meaning that it can only use one core
to carry out each operation, regardless of how many cores or threads are
available to it. As such, it can only perform one request to the storage engine
at a time.

In response to the formula engine's request for data, the storage engine will
return the data stored in a temporary data cache. Unlike the compressed
column stores that are held by the storage engine, data in this cache is
uncompressed and held in straightforward in-memory tables.

The formula engine works with either the data structures created by its own
operations or with the caches created by the storage engine. The results from
the formula engine are not cached in memory so they need to be recalculated
each time they are needed. However, the data cache returned by the storage
engine is retained and can be reused for queries that follow. This can be
especially good for improving performance when you have a measure that
needs to calculate many data points for a visual on a report.



The storage engine
The storage engine is officially called the xVelocity in-memory analytical
engine, but as we saw in the previous chapter, it is better known as the
VertiPaq engine. As we have already seen, the purpose of the storage engine
is to take requests from the formula engine, scan the columnar database,
retrieve the relevant data, and then return the data to the formula engine in the
form of a data cache.

Each scan is the result of an internal query that uses a SQL-like language
called xmSQL. As we shall see later in this chapter, we can use tools to view
the xmSQL queries, which will help us to understand how the formula engine
is querying the storage engine.

Unlike the formula engine, the storage engine is multi-threaded. This means
that operations carried out by the storage engine can utilize multiple cores if
they are available. However, the storage engine only receives requests from
the formula engine in a synchronous manner. Being single-threaded, the
formula engine must wait for a query request to be completed by the storage
engine before it can send the next request. As such, the storage can only make
use of its multi-threaded ability when processing a query that involves
several column segments, where it can use one thread per segment.

The data cache holds a limited number of results from the storage engine, but
if the storage engine receives a request that matches one already in the cache,
it will use the cached version rather than scan data in memory. The storage
engine is generally faster at scanning than the formula engine, as it is
optimized for scan operations. It also has the advantage that it scans
compressed data, whereas the formula engine scans data held in a cache,
which is uncompressed.



Monitoring performance with DAX
Studio
In the previous section, we learned that part of the process of executing a
DAX query results in the calculation engine producing a logical query plan
and a physical query plan. In addition, when attempting to optimize a slow
DAX query it helps to understand which elements are carried out by the
formula engine and which are carried out by the storage engine. To help us
with both processes, we're going to look at using DAX Studio, a third-party
tool that we've looked at briefly in previous chapters.

To follow along with this section, you will need to download and install DAX Studio,
which is available from:
https://daxstudio.org

Once you have installed DAX studio, you will be able to create links to
tabular data models in the following products:

Power BI
Excel Power Pivot
SQL Server Analysis Services (SSAS) Tabular

If you are working with an Excel Power Pivot data model, then you will need
to connect to DAX Studio by launching it from within Excel itself:

1. Once you have your Power Pivot file open in Excel, go to the Add-ins
ribbon and click on the DAX Studio button, as shown in Figure 13-1:

https://daxstudio.org/


Figure 13-1: The DAX Studio button in Excel Power Pivot

2. DAX Studio should now open showing the connection dialog, as shown
in Figure 13-2. Select the default option of PowerPivot Model for the
data source, which should also show the name of the Excel file
containing your data model:

Figure 13-2: Connecting DAX Studio to a PowerPivot data model

3. Click on the Connect button to open DAX Studio, which will now be
connected to your Excel Power Pivot data model.

However, for this section, we are going to work with a Power BI Desktop
example. To connect to a Power BI data model, you need to ensure that the
required Power BI Desktop file is open, with the data loaded. Unlike with
Excel, there is no icon from within the Power BI Desktop application to open
DAX Studio, so it should be opened from the Windows desktop:

1. Once again, you will be presented with the connection dialog. This time
select the PBI / SSDT Model as the data source and select the
appropriate Power BI Desktop file from the associated drop-down list,
as shown in Figure 13-3:



Figure 13-3: Connecting DAX Studio to a Power BI data model

2. Click on the Connect button to open DAX Studio, which will now be
connected to your Power BI data model.

Once open and connected to your Power BI data model, you will be
presented with a screen like the one shown in Figure 13-4:



Figure 13-4: The DAX Studio screen

This screen consists of five different sections:

A Microsoft Office-style ribbon runs across the top, giving gives access
to the features available in DAX studio, including those we will be
looking at to help us to optimize our data.
The Metadata panel is on the left-hand side and shows the metadata from
the loaded data model, including those tables that are hidden away
behind the scenes when the data model is viewed from within Power BI
Desktop. These tables include the date tables that are automatically
created by default to help with the time intelligence functionality. Tables
and columns can be dragged on to the editor panel to save typing them.
This panel also has tabs to show a list of DAX functions and a list of the
Dynamic Management Views (DMVs).
The query editor panel is where you will write DAX queries and
evaluate statements.



The Output panel is where you see information about the queries you run.
It also includes tabs to display the results of queries and other tabs are
displayed to show query plans and other functions.
Finally, the status bar runs along the bottom and shows the current
connection information. This is useful if you want to connect to the
current data model using SQL Server Management Studio.

With our Power BI Desktop file open and DAX Studio connected, we are now
ready to start exploring our data and its related use of the formula and storage
engines. We do this by entering DAX queries in the query editor panel.

There are two important points to note when entering DAX queries in DAX
Studio:

Each DAX query needs to start with the EVALUATE keyword.
The output from a query must be a table.

If the output from a query is not a table, then it will need to be wrapped by a
function that will convert the output into a table.



Viewing performance with DAX
Traces
For this example, we're going to use a very simple DAX query. Enter the
following in the query editor and then click on the Run button in the Query
section of the Home ribbon:

EVALUATE
FILTER (
    'Product',
    'Product'[Color] = "Red"
)

This will return all of the columns from the Product table where the value of the
Color column equals Red. The result from this query will be displayed on the
Results tab of the output panel.

We can now start to use the features of DAX Studio to investigate the
performance of our DAX query. On the Traces section of the Home ribbon, as
shown in Figure 13-5, two buttons enable server timings and show the query
plans that we discussed in the previous section of this chapter:

Figure 13-5: Showing the query plan and enabling server timings

Click on both buttons to enable the query plan and server timings features.
This will add two new tabs to the output panel. Now re-run this DAX query,
but before you do so, click on the Clear Cache button on the Query section of
the Home ribbon. It is important to do this before you run any query, to avoid
the query engine using data that may already be cached, which would give
inaccurate timings.



When the query has run, you will see some information displayed on the new
tabs of the output panel. Figure 13-6 shows the output for the server timings:

Figure 13-6:The output for server timings

This shows that overall the query took 6 ms to process, with 2 ms being spent
by the storage engine retrieving data and 4 ms being spent by the formula
engine processing the data returned by the storage engine. We can also see that
the query only required a single storage engine query and no cached data was
used.

If we switch to the Query Plan tab of the output panel, we can see both the
logical and physical query plans that were created to execute this query, as
can be seen in Figure 13-7:

Figure 13-7: The physical and logical query plans displayed in DAX Studio

Unfortunately, the query plan text is displayed in its raw form, so it can be
difficult to read without some manual reformatting, especially when looking at
query plans for complex DAX queries.

When it comes to identifying bottlenecks and other performance issues with
DAX queries, it is important to look out for long-running queries. It is also



important to look at how much time is spent processing the query in the
storage engine versus the formula engine. Once you have identified potential
issues, then you can start to dig into the query plans and the output generated
in the output panel, to get an idea of what is going on. For example, you may
have a DAX query that uses a filter, which is taking a long time to execute.
Looking at the output, you might realize that it is returning far more rows than
expected. By altering the place in the query where the filter sits, it may be
possible to reduce the number of rows being processed, speeding up the query
considerably.

Unfortunately, there is often no right way to write a DAX query. Performance
can depend on the structure of the data model or the type of data that you are
querying. This is where knowing how to use these tools will help you to
understand how a query is being processed. This, in turn, will allow you to
experiment with changes to your query and to see how those changes affect
query timings and the overall performance of the query.



View VertiPaq metrics
If you are using the latest version of DAX Studio, then it now includes an
option to view information and metrics about the currently connected data
model, which allows you to make some detailed analysis of the model's
design. It gives similar information to the data preview tools that are now in
Power BI Desktop.

To access these advanced features, you will need to enable them on the
Advanced tab of the Options screen. To access this screen, click on the File
tab. Check all of the checkboxes in the Preview Features section, as shown in
Figure 13-8:

Figure 13-8: Enabling DAX Studio preview features from the options screen

You will now have a new Advanced ribbon, as shown in Figure 13-9, which
includes options to import, export, and view metrics. It also includes a button



to launch SQL Server Profiler, which we will cover in the next section:

Figure 13-9: The button to launch SQL Profiler

To view metrics for the currently connected data model, click on the View
Metrics button on the Metrics section of the Advanced ribbon.

DAX Studio will do a quick analysis of the data model's structure and add a
new tab to the output panel called VertiPaq Analyzer. This tab has three tabs
of its own: Tables, Columns, and Relationships. Figure 13-10 gives an
example of what the Tables screen looks like:

Figure 13-10: Viewing metrics with the VertiPaq Analyzer

The screen gives plenty of information about columns in each table. Each
column includes details of the cardinality of the column, the different sizes,
and the type of encoding being used to compress data in the column. As we
have seen in previous chapters, this type of information can be very helpful



when you are working on improving the performance of low-performing
queries.



Using SQL Server Profiler
Another tool we can use to help to monitor and improve the performance of
our DAX queries is SQL Server Profiler. This tool is installed as part of the
SQL Server management tools and can be accessed directly from Windows or
from within DAX Studio. SQL Server Profiler allows you to capture trace
files that record events generated by an instance of the Analysis Services
engine. Using the information it captures, you can do the following:

Monitor performance.
Debug queries.
Find slow running queries.
Test queries in development.
Audit activity on an instance.
Save data to a file or a SQL Server table.

If you want to use Profiler with an instance of Analysis Services, you will
need to know some details about that instance, such as the name of the server
it is running on.

As Excel Power Pivot and Power BI Desktop also use the Analysis Services
engine, it is possible to capture event Traces with them, by saving trace events
to a file and then replaying that file using SQL Server Profiler. Also, it is
possible to directly connect Profiler to an instance of Analysis Services on an
open Power BI Desktop report.

To capture a trace file in Excel, you will need to click the Settings button on
the PowerPivot ribbon. On the Diagnostic Options section of the PowerPivot
Options & Diagnostics dialog, check the Enable PowerPivot Tracing for the
current Excel session checkbox, as shown in Figure 13-11. You may need to
open the Excel Power Pivot data model first, before you can use this option,
by clicking on the Manage button on the Data Model section of the
PowerPivot ribbon:



Figure 13-11: Enabling Power Pivot tracing in Excel

To connect Profiler directly to an instance of Analysis Services running on an
open Power BI Desktop report, you will need to know the port number that
Power BI Desktop is using. If you've already connected to Power BI Desktop
with DAX Studio, then the port number will be shown on the status bar as can
be seen in Figure 13-12:

Figure 13-12: Getting the port number from DAX Studio's status bar



Alternatively, you can find it using this method:

1. Open Task Manager and find the Process ID (PID) associated with the
msmdsrv process. This is the process for the Analysis Services engine
running within Power BI Desktop.

2. Open Command Prompt and enter the following:

netstat -anop tcp

3. Find the port number in the Local Address column for the PID that you
obtained in step 1.

Open SQL Server Profiler and complete the Connect to Server dialog as
shown in Figure 13-13, replacing the port number after localhost on the
Server name field with the port number you obtained:

Figure 13-13: Connecting to Analysis Services

In DAX studio, if you have enabled the Advanced features on the Options
screen, there is a SQL Profiler button on the External Tools section of the
Advanced ribbon. If you click on this button, then it will open SQL Server
Profiler and it will automatically connect to the same instance of Analysis
Services that you are connected to with DAX Studio.

Once connected, you can run a trace to catch DAX query plans, queries to the
storage engine, and any other events that you might be interested in, relating to



your DAX query. As a minimum, consider capturing data relating to the
following events:

Query End
DAX Query Plan
VertiPaq SE Query Cache Match
VeritPaq SE Query End

Figure 13-14 shows an example of the Events Selection screen for a trace
file, showing these options selected:

Figure 13-14: Selecting events to capture for a trace file

If you now go back and run a query or create a new visual on the Power BI
Desktop report page, then you will see events being created and saved to the
trace file. Figure 13-15 shows an example of the data you can expect to see:



Figure 13-15: An example of events being captured to a trace file

In addition to creating trace files, SQL Server Profiler can also read and
display previously saved trace files. For example, we have seen that is
possible to save a trace file using Excel Power Pivot.

Trace files give you information about CPU time and duration, which is very
useful when identifying bottlenecks. For this, it is important to understand how
much time is spent processing a query in the storage versus the formula
engine. Using the Query End event will give you the total duration of a DAX
query, while the VertiPaq events will provide information about the duration
spent processing with the storage engine. If you subtract this information from
the total duration, it will give you the time spent with the formula engine.



Using Power BI Performance
Analyzer
For the last section in this chapter, we are going to look at the Performance
Analyzer feature in Power BI Desktop. This feature gives information on
how elements of a report, such as visuals and DAX queries, are performing.

To display the Performance Analyzer pane, click on the Performance
Analyzer checkbox on the Show section of the View ribbon, as shown in
Figure 13-16:

Figure 13-16: Enabling the performance analyzer feature in Power BI Desktop

Once checked, the Performance Analyzer pane will be displayed to the right
of the report desktop. From here, you can start recording data and see
information on the processing times required to update report elements when
a user interacts with a report. For example, if you alter a slicer, click on a
visual, or adjust a filter, then it will send a query to the data model.
Information on the action is then displayed on the Performance Analyzer
pane.

Data is recorded and displayed in real time, so you will immediately see the
Performance Analyzer pane updated as you interact with a report.

Each visual contains information on the following categories:



DAX query: The time between a visual sending a query and Analysis
Services returning the result
Visual display: The time taken to draw the visual on screen
Other: The time taken to prepare queries, for other visuals to complete,
or other background tasks

Figure 15-17 shows an example of the output you get with the Performance
Analyzer:

Figure 13-17: An example of the output from the Power BI performance analyzer

You can see from this where data has been captured for refreshing the visuals
and where data was generated when a visual was cross-highlighted.



When identifying bottlenecks in your report, you should be looking for large
duration times. If it is the visual display that has a long duration, you should
consider whether another type of visual would be better or whether there is
some way to reduce the amount of data included in the visual.

If the DAX query has a long duration, then it may need further investigation.
It may be due to a slow measure or a poorly designed data model. It is
possible to copy the query by clicking on the Copy query. You can then paste
the query into DAX Studio or SSMS and execute the query from there, using
the features we looked at earlier in this chapter.

Finally, it is possible to save the information created by the Performance
Analyzer to a .json file, by clicking on Export.



Summary
In the last chapter of this book, we looked at some of the techniques and tools
that are used to help with analyzing the performance of DAX queries and
identify potential problems.

We started off this chapter by learning about the storage and formula engines,
the two engines used to process a DAX query. We looked at how they work
together to retrieve data from the data model, and then process that data to
return a result. We learned about how the logical and physical query plans
produced by these query engines can help to identify and resolve
performance issues with DAX queries.

Finally, we looked at some tools to help us to investigate the performance of
DAX queries. We looked at DAX Studio, SQL Server Profiler, and the
Performance Analyzer feature in Power BI Desktop. We learned about using
these tools to monitor performance by looking at the output of the query
engines and how they can be used to create and read Traces files containing
events that occur when processing DAX queries.

We have now come to the end of our hands-on journey into learning about the
basics of the DAX language. You should now have a good understanding of
how DAX can help you, as a business intelligence professional, to gain much
deeper insights into your data.
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