Hands-On

Business Intelligence
with DAX

lan Horne

Hands-On Business Intelligence with DAX

Discover the intricacies of this powerful query language to gain valuable
insights from your data

Ian Horne

Packh

BIRMINGHAM - MUMBAI

Hands-On Business Intelligence
with DAX

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles
Or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing
or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Reshma Raman
Content Development Editor: Nazia Shaikh
Senior Editor: Ayaan Hoda

Technical Editor: Dinesh Chaudhary

Copy Editor: Safis Editing

Project Coordinator: Aishwarya M ohan
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Production Designer: Nilesh M ohite

First published: January 2020
Production reference: 1300120

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83882-430-3

www.packt.com

http://www.packt.com/

To my mum and dad for all their love, and for always being there. To my lovely wife Catherine
and my wonderful sons Ollie and Josh, for their continuous love, support and inspiration. To all
my family and friends who took an interest, and encouraged me to write this book.

— lan Horne

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://subscribe.packtpub.com/

Why subscribe?

Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version at
www.packt .com and as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at customercareepacktpun.con for more details.

At . packe . com, yOu can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

http://www.packt.com/
http://www.packt.com/

Contributors

About the author

Ian Horne is head of data services with a global organization. He is a
business intelligence (BI) professional with over 30 years of experience and
specializes in the design, development, and maintenance of corporate
databases, data warehouses, associated ETL processes, and end user
reporting. He has extensive knowledge of the Microsoft BI stack, including
SQL Server, SSRS, SSAS, Power BI, and, of course, DAX. Ian holds a
diploma in computing and a Bachelor of Science degree from the Open
University. In his spare time, he creates training videos on Power BI, DAX,
and other data-related matters, which he shares through his YouTube channel,
Data World TV.

About the reviewers

Felipe Vilela has a master's degree in BI and data warehousing from IESB
University and has several certifications from MicroStrategy and others, such
as Tableau and Alteryx. He has worked for more than 10 years on BI projects
with big US companies and has also been a technical reviewer for two of
Packt's MicroStrategy books.

Juan Tomas Oliva Ramos is an environmental engineer from the University
of Guanajuato, Mexico, with a master's degree in administrative engineering
and quality. He now works in the Tecnologico Nacional de México campus
Purisima del Rincon, Guanajuato. He has more than 5 years experience in the
management and development of patents, technological innovation projects,
and technological solutions through the statistical control of processes. He
has been a teacher of statistics, entrepreneurship, and technological
development since 2011. He has developed prototypes via programming and
automation technologies for the improvement of operations, all of which have
been registered for patents.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit autnors.packep
w.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
1dea.

http://authors.packtpub.com/

Table of Contents

Title Page
Copyright and Credits
Hands-On Business Intelligence with DAX
Dedication
About Packt
Why subscribe?
Contributors
About the author
About the reviewers
Packt is searching for authors like you
Preface
Who this book is for
What this book covers
To get the most out of this book
Download the example code files
Download the color images
Conventions used
Get in touch
Reviews

1. Section 1: Introduction to DAX for the BI Pro

1. What is DAX?
Introducing DAX
Working with data types and operators
Data types
Operators
Working with calculated columns and measures
Calculated columns
Measures
Calculated columns versus measures
Evaluation contexts – part 1
Row context
Filter context

Using the CALCULATE function

Summary
2. Using DAX Variables and Formatting
Getting started with DAX variables
Variable nesting
Using variables with measures, calculated columns, and tables
Formatting your DAX code
Debugging errors in your DAX code
Summary
3. Building Data Models
Introduction to data modeling
Data modeling concepts in DAX
Fact tables and dimension tables
Star schema and snowflake schema
Relationships
Cardinality
Cross filter direction
Hierarchies
Getting data into your data model
Building your first data model
Extending your data model
Adding a calculated column
Adding a calculated table
Adding a measure
It's a date
Summary
43 Working with DAX in Power BI, Excel, and SSAS
Working with DAX in Power BI Desktop
The DAX formula editor
Working with DAX in Excel Power Pivot
Installing and enabling the Power Pivot add-in
Adding data to an Excel data model
Extending an Excel data model
Working with DAX in SSAS Tabular
Importing the Excel Power Pivot data model into the SSDT project
Deploying your data model to an instance of SSAS Tabular
Working with the tabular database in SSMS

Querying SSAS Tabular data using DAX

Summary
5. Getting It into Context
Introducing evaluation contexts – part 2
Deep diving into row context
Iterator functions
Deep diving into filter contexté
Expanded tables
Changing context using DAX functions
Context transition
Changing the filter context
Using the ALL function
Using filters with CALCULATE
Summary

2. Section 2: Understanding DAX Functions and Syntax

6. Progressive DAX Syntax and Functions
Breaking down DAX syntax
Naming requirements
Dealing with relationships
Dealing with multiple relationships
Virtual relationships
Looking at DAX functions
Function types
Function groups
Introduction to aggregation functions
Aggregation function reference
The MIN, MINA, and MINX functions
Functions for parent-child hierarchies
Parent and child function reference
The PATH, PATHCONTAINS, and PATHLENGTH functions
The PATHITEM and PATHITEMREVERSE functions
Summary
7. Table Functions
Introducing table functions
Creating a DAX calculated table
Using a table expression as a table function parameter
Querying your data model using table functions

Looking at table manipulation functions

Table manipulation functions reference
The CROSSJOIN function
The DATATABLE function
The EXCEPT, INTERSECT, and UNION functions
The GENERATESERIES function
Working with table functions
The COUNTROWS function
The PRODUCTX function
The CONTAINS function
The CONCATENATEX function
Summary
8. Date, Time, and Time Intelligence Functions
Introduction to date and time functions
Date and time function reference
Working with date and time functions
Building a date table
The CALENDAR and CALENDARAUTO functions
The DATEDIFF function
The EDATE function
The EOMONTH function
The YEARFRAC function
Looking at time intelligence functions
Time intelligence function reference
Making your data more intelligent over time
DAX functions that return a single date
Comparing values over different periods of time
The opening and closing balance functions
Summary
9. Filter Functions
Introduction to filter functions
Filter function reference
Filtering your data with filter functions
The ALL and ALLEXCEPT functions
The ALLSELECTED function
The FILTER function
The KEEPFILTERS function

The LOOKUPVALUE function

The SELECTEDVALUE function

Summary

I(L Statistical Functions

Introducing statistical functions
Statistical function reference

Calculating averages
The AVERAGE function
Calculating rolling averages with the AVERAGEX function

Working with percentiles
The PERCENTILE.EXC and PERCENTILE.INC functions
The PERCENTILEX.EXC and PERCENTILEX.INC functions
The MEDIAN and MEDIANX functions

Ranking your data
The RANK.EQ function
The RANKX function

Calculating standard deviation and variance

Summary

114 Working with DAX Patterns

Introducing Power BI Quick Measures
Creating your first quick measure

Calculating cumulative totals

Binning data using segmentation

Comparing equivalent periods
Comparing previous periods
Comparing the period-on-period percentages
Calculating period-to-date totals

Working with mathematical patterns

Summary

3. Section 3: Taking DAX to the Next Level

12.(xmimizing Your Data Model
Introducing the VertiPag engine
Value encoding
Dictionary encoding
RLE
Understanding your data model
Data profiling with Power BI Desktop

Data profiling in SSAS Tabular and Excel Power Pivot

Simplifying your data model
Understanding your source data
Keeping your data model simple
Using a star schema
Merging and appending tables
Importing required rows and columns only
Using the correct data type
Using measures instead of calculated columns

Creating summary tables

Summary

13. Optimizing Your DAX Queries

Introduction to the DAX calculation engines
The formula engine
The storage engine

Monitoring performance with DAX Studio
Viewing performance with DAX Traces
View VertiPag metrics

Using SQL Server Profiler

Using Power BI Performance Analyzer

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

DAX provides an extra edge by extracting key information from the data that
1s already present in your model. With this book, you will leverage DAX's
functionality and flexibility in the business intelligence (BI) and data
analytics domain.

You'll start with the basics of DAX, along with the importance of good data
models, and how to write efficient DAX formulas by using variables and
good formatting. You will learn how DAX queries work using an example-
based approach. You will learn how to optimize your BI workflow by
writing efficient and powerful DAX queries with easy-to-follow
explanations and examples. You will learn how to manipulate and load
datasets of different complexities within various Microsoft products, such as
Power BI, SQL Server, and Excel Power Pivot. You will learn how to build
and extend your data models to gain additional insights. Later, you will delve
into progressive DAX syntax and functions to understand complex
relationships in DAX. You will cover important DAX functions, specifically
those related to tables, date and time, filtering, and statistics. You will then
move on to more advanced topics, such as how the formula and storage
engines work to be able to optimize your queries.

By the end of this book, you will be able to employ DAX to enhance your
data model by extracting new information and gaining deeper insights.

Who this book is for

This book is for data analysts, business analysts, Bl developers, or any SQL
users who want to get the best out of DAX in the BI and data analytics
domain using an example-rich guide. You will learn how to use DAX queries
in Power BI, Excel, and SQL Server to carry out efficient analysis. Some
understanding of BI concepts is mandatory.

What this book covers

cnapter 1, What is DAX?, gives you an overview of the DAX language, what it
is, and how, as a BI pro, you can use it to create new information from
existing data. It will introduce the different calculation types, calculated
columns and measures, and the CALCULATE function, probably the most
important DAX function.

cnapter 2, Using DAX Variables and Formatting, teaches you about using
variables in DAX formulas and how these can make your DAX code easier
to read and potentially more efficient. You will also look at recommended
formatting styles for DAX code. Finally, you'll look at error handling and
how using variables can make this easier.

cnapter 3, Building Data Models, talks about the importance of building a
well-defined data model, both from the point of view of a BI professional
and in terms of making DAX easier to use.

chapter 4, Working with DAX in Excel, Power Bl, and SSAS, 100ks at the three
different platforms that support DAX — Excel, Power BI, and SSAS Tabular.
You will look at loading data in more depth and the different ways DAX is
used in each.

cnapter 5, Getting it into Context, moves beyond the basics and builds upon
what you learned about evaluation contexts in the first chapter. You will learn
about the difference between the row context and the filter context and how
these affect DAX functions. You will also take a more in-depth look at the
CALCULATE function.

chapter 6, Progressive DAX Syntax and Functions, explores the structure of
DAX syntax, and you'll look at the groups of functions currently available in
DAX. You'll take a more in-depth look at relationships, aggregation
functions, and parent-child functions, all with hands-on examples.

chapter 7, lable Functions, concerns the DAX table functions and includes
details of the syntax of each function, as well as an explanation of how each
works. Finally, you'll get hands-on with some practical examples of the
functions being used.

chapter 8, Date, Time, and Time Intelligence Functions, is where you will
learn about the DAX date, time, and time intelligence functions, with details
of the syntax of each function, including an explanation of how each works.
Finally, you'll get hands-on with some practical examples of the functions
being used.

chapter 9, Filter Functions, moves on to the DAX filter functions, with details
of the syntax of each function, including an explanation of how each works.
Finally, you'll get hands-on with some practical examples of the functions
being used.

chapter 10, Statistical Functions, covers the DAX statistical functions, with
details of the syntax of each function, including an explanation of how each
works. Finally, you'll get hands-on with some practical examples of the
functions being used.

chapter 11, Working with DAX Patterns, is the final chapter of part 2, and you
will look at some examples of DAX being used in the form of DAX patterns.
Each pattern will have a walkthrough involving a practical example that
breaks down the code and gives a detailed explanation of how it works.

chapter 12, Optimizing Your Data Model, delves into the VertiPaq engine and
how it can be used to help you optimize your data model. You'll also look at
some ways in which you can optimize your data model along with how and
why this may improve performance.

chapter 13, Optimizing Your DAX Queries, shows you some techniques that
will help to make your DAX calculations more efficient, including a look at
some tools to help you analyze query performance. You'll also look at the
two DAX calculation engines: the storage engine and the formula engine.

To get the most out of this book

You should be familiar with general BI concepts. A basic understanding of
using Power BI, Excel, and SQL Server to carry out efficient analysis is

mandatory.

Download the example code files

You can download the example code files for this book from your account
at www.packe.com. If you purchased this book elsewhere, you can visit wiw.packtpu
b.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt . con.
2. Select the Support tab.
3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen
instructions.

Once the file 1s downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
o 7-Zip/PeaZip for Linux

The code bundle for the book 1s also hosted on GitHub at nttps://github. com/pac
ktPublishing/Hands-On-Business-Tntelligence-with-pax. IN case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
https://www.packtpub.com/support
http://www.packt.com/
https://github.com/PacktPublishing/Hands-On-Business-Intelligence-with-DAX
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here: ncep://wm.

packtpub.com/sites/default/files/downloads/9781838824303 ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/9781838824303_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codetntext: INdicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here 1s an example: "Mount the downloaded webstorm-10+.amg disk
image file as another disk in your system."

A block of code is set as follows:

Return % =

DIVIDE (
SUM (Sales[ReturnQuantity]),
SUM (Sales[SalesQuantity])

)

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "Select System info from the Administration panel."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and email us

at customercare @packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit wiw.packtpub.com/s
upport /errata, S€lecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyrightepackt.com With a link to
the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
bOOk’ please ViSIt authors .packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors can
see your feedback on their book. Thank you!

For more information about Packt, please visit packt.con.

http://www.packt.com/

Section 1: Introduction to DAX for
the BI Pro

This section covers the basics of DAX, along with the importance of good
data models and how to write efficient DAX formulas by using variables and
good formatting. You will understand how DAX queries work using an
example-based approach. You will also learn how to optimize the BI
workflow by writing efficient and powerful DAX queries with easy-to-
follow explanations and examples:

e Chapter 1, What Is DAX?

Chapter 2, Using DAX Variables and Formatting

Chapter 3, Building Data Models

Chapter 4, Working with DAX in Power BI, Excel, and SSAS
Chapter 5, Getting It into Context

What is DAX?

In this chapter, you will begin your journey to mastering the use of DAX with
a brief introduction to the DAX language itself. We'll look at what it is and
why, as a Business Intelligence (BI) professional, you need to learn it if you
want to unleash the full power of Excel Power Pivot, Analysis Services, or
Power BI.

By the end of this chapter, you will be introduced to the different groups of
functions and operators available and the differences between calculated
columns and measures, and you will have started your understanding of
evaluation contexts. This chapter will round off with a look at how you can
alter how filters affect measures by using one of the most important DAX
functions, the carcurare function.

This chapter is broken down into the following sections:

Introducing DAX

Working with data types and operators
Working with calculated columns and measures
Evaluation contexts — part 1

Using the carcurare function

Introducing DAX

DAX, or Data Analysis Expressions to give it its full name, is a collection
of constants, operators, and functions that are used to build expressions that
return one or more values. It was originally developed by the SQL Server
Analysis Services team as part of their Project Gemini, the development of a
new in-memory database technology that would let Excel users work with
massive amounts of data. It was introduced initially in 2009 as an add-in to
Microsoft Excel 2010 and eventually went on to become the Power Pivot
add-in for Excel that we have today.

Today, DAX consists of more than 250 functions, and regularly receives
updates to existing functions as well as receiving new functions. It is a
language used by the following products in Microsoft's business intelligence
stack:

e Excel Power Pivot

e Power BI

e SQL Server Analysis Services (SSAS) Tabular
e Azure Analysis Services

DAX is not a programming language in the traditional sense but is instead a
functional language, which means that it makes calls to a function as part of
an expression. The result of an expression will, depending on the function,
return either a single value or a table as output. The output from an
expression can be used to nest functions, by using it as the input parameter to
another function.

DAX can only be used to filter or query a physical table; it cannot add,
delete, or update data in a table. However, if you are using Power BI or
SSAS Tabular, it can use the result of a DAX expression to add a new table
to a data model. Unfortunately, this method cannot be used to add tables to an
Excel Power Pivot data model without using a workaround, which itself has
limitations.

As Power Pivot was originally built as an add-in to Excel, many of the DAX

functions are very similar to functions in Excel, which creates a level of
familiarity for BI professionals who are already using Excel.

In Table 1-1, you will see that while some functions are almost identical in
syntax, others are not. In Excel, the axo function can compare up to 255
logical conditions, while the equivalent function in DAX is limited to just
two. Even where functions are identical, the ones in Excel will work with a
range of cells, whereas the DAX equivalent will work with columns in a

table:
Excel DAX Comments
Function Function
SUM (cell . Excel works with a range of cells; DAX
able[column .
range) rabtel " | works with the column of a table.
)
MIN (cell e Excel works with a range of cells; DAX
able[column .
range) rablete " | works with the column of a table.
)
MAX (.
MAX (cell Excel works with a range of cells; DAX
able[column .
range) rapdel " | works with the column of a table.
)
MEDIAN (MEDIAN (Excel works with a list of numbers of
numberl, tablefcolumn] | cells; DAX works with the column of a
[number2], ...) table.
)

AND (logicall, | AND Excel supports up to 255 logical

[logical2], logicall, conditions; DAX only supports 2 logical
) logical2) Conditions.
Table 1-1: Comparison of Excel and DAX functions

If you are already working with formulas in Excel, then you will be
accustomed to working with cells and ranges of cells. However, if you are to
successfully transition to working with DAX, you will need to learn to work
with the rows and columns of data in tables.

DAX consists of the following function groups:

o Aggregate

e Count

e Date and Time

e Time intelligence
e Information

e Logical

e Mathematical

e Statistical

o Text

e Parent/Child

While DAX functions appear similar to functions found in Excel, they have
their own unique characteristics, such as being able to perform calculations
that vary by context. They can also return tables as well as values and they

can work across the relationships of a data model.

As a Bl professional, you may be asking whether it's necessary to learn DAX
to be able to use tools such as Power BI or Excel Power Pivot; and the
simple answer is no. If you have a well-designed data model filled with
good quality data and your reporting requirements are simple, you can get
started by dragging and dropping a numeric field onto the report canvas in
Power BI, or by adding it to a pivot table in Excel. Behind the scenes, a

DAX measure is automatically created, and this is known as an implicit
measure.

However, when you want to add columns to existing tables, based on data
already in those tables, or you want to create some summary tables, you will
probably have to go back to your IT department to get them to add these to an
existing database or data warehouse.

The power of DAX is that it enables you, as a Bl professional, to add these
elements to your data model yourself. Using DAX functions, you can add new
columns to an existing table, such as an age range field, based on a person's
age.

You can also create explicit measures, which allow you to create aggregated
summaries of data, such as record counts. Furthermore, these measures will
be dynamically calculated based on any filters or slicers that you add to your
Power BI dashboard or Power Pivot worksheet. As you make changes to
these filters and slicers, the measures are recalculated dynamically.

With Power Bl and Analysis Services, DAX can even be used to create new
tables in your data model. Unfortunately, this feature is not available with
Excel Power Pivot models.

Quite simply, DAX gives you, as a Bl professional, the power to gain deeper
insights into your data that you wouldn't otherwise be able to get. When you
start to look at the more powerful DAX functions, such as the time-
intelligence functions, you can start to carry out some truly amazing analysis
of your data. It becomes easy to look at a year-on-year comparison of sales
or to look at percentage growth across product ranges for different dates.

While the syntax of DAX 1s simple, mastering its use can be a challenge. If
you are coming from an Excel background, you should be prepared to adopt a
different mindset. You will need to study the theory that will be delivered in
the following chapters and gain a solid understanding of the following
fundamental concepts:

e Calculated columns and measures

o Context
e Syntax
e Functions

Each of these will be looked at in detail throughout this book, with plenty of
hands-on examples to help you to understand each concept. When you have
done this, you will be ready to put what you have learned into practice.
Ultimately, the key to truly mastering the art of using DAX is down to lots of
practice and experience.

Working with data types and
operators

In DAX, you define the data type for columns of data in a table. In this
section, we will look at the different data types that are available and delve
into the implicit data type conversions that take place when data is used in a
DAX expression. We will also look at the different groups of available
operators.

Data types

Choosing the correct data type when building your data model helps to
ensure that the size of your model is kept to a minimum. It can also help with
performance when it comes to refreshing the data in your model.

When you load new data into your model, the modeling engine will attempt to
pick the most efficient data type for a column, based on the values that it is
importing for that column. However, it is worth checking the data types that it
selects, as it may not always choose the most appropriate data type for your
data needs. For example, if a column currently contains only integer numbers,
the modeling engine will pick the Whole Number data type. If this column
subsequently contains fractional values, then the fractional part of these
numbers will be lost when the data is imported. Worse still, if the column
subsequently contains non-numeric data in the column, then you will get
errors when the data is refreshed.

data type requirements. Although DAX may implicitly convert a data type for you,

8 You should always use the correct data type, as some DAX functions have special
there are some cases where it will not.

Implicit conversions are described later in this article. Table 1-2 gives
details of the different data types available in DAX:

Data Stored

Type As Comments
64-bit (8
Whole byte) Integers between -9,223,372,036,854,775,808

Number integer and 9,223,372,036,854,775,807.
value

Decimal 64-bit (8 | Negative numbers between -1.79E +308 and
Number byte) -2.23E -308, zero, and positive number
real between 2.23E -308 and 1.79E + 308; the
number number of significant digits is limited to 15
decimal digits, with the separator occurring
anywhere within the number.
Currency
(Fixed 34_(]:)“ (8 Numbers that have four decimal digits of fixed
Decimal rgatll precision between -922,337,203,685,477.5808
N : and 922,337,203,685,477.5807.
umber in | number
Power BI)
64 bit (8 | Underneath the covers, the Date/Time value is
: byte) stored as a Decimal Number type. Supports
Date/Time real dates from March 1, 1900 through to December
number 31, 9999.
A : :
Unicode Represents strings, numbers, or dates in a text
Text character format; maximum length 1s 268,435,456
. Unicode characters or 536,870,912 bytes.
string
True/False | Boolean | A Boolean value that is either True or False.
Blank N/A Creates a blank with the zranx function, and

verify blanks with rseranx.

‘ Table ‘ N/A ‘ Represents a table in the data model.

Table 1-2: Data types in DAX

DAX functions have specific requirements for the type of data used for inputs
and outputs. If the data in a column passed as an argument 1s not compatible
with the data type required by the function, DAX will try to implicitly
convert it into the required data type. If this is not possible, it will return an
error.

The type of implicit conversion that DAX performs is determined by the
operator, it will convert the data into the type required before it performs the
requested operation. Tables 1-3 through to /-6 list the operators and show
the implicit conversion that takes place when the data type in the row is
combined with the data type in the column.

Table 1-3 shows the implicit conversion that takes place when a value with
the data type in the row is added to a value with the data type in the column:

Addition (+) | Whole Currency Decimal Date/Time
Whole Whole Currency Decimal Date/Time
Currency Currency Currency Decimal Date/Time
Decimal Decimal Decimal Decimal Date/Time
Date/Time Date/Time | Date/Time | Date/Time | Date/Time

Table 1-3: Addition

Table 1-4 shows the implicit conversion that takes place when a value with
the data type in the row is subtracted from a value with the data type in the

column:

Subtraction (-)

Row — Column Whole Currency | Decimal Date/Time
Whole Whole Currency Decimal Decimal
Currency Currency Currency Decimal Decimal
Decimal Decimal Decimal Decimal Decimal
Date/Time Date/Time | Date/Time | Date/Time | Date/Time

Table 1-4: Subtraction

Table 1-5 shows the implicit conversion that takes place when a value with
the data type in the row 1s multiplied by a value with the data type in the

column:
Multiplication (*) | Whole Currency | Decimal | Date/Time
Whole Whole Currency | Decimal | Whole
Currency Currency | Decimal Currency | Currency

Decimal Decimal | Currency | Decimal | Decimal

Table 1-5: Multiplication

Table 1-6 shows the implicit conversion that takes place when a value with
the data type in the row is divided by a value with the data type in the
column:

Division (/) Whole Currency | Decimal Date/Time
Row / Column

Whole Decimal Currency Decimal Decimal
Currency Currency | Decimal Currency | Decimal
Decimal Decimal Decimal Decimal Decimal
Date/Time Decimal Decimal Decimal Decimal

Table 1-6: Division

In addition to the implicit conversions of numeric types shown in the
preceding tables, DAX will automatically convert numbers into strings and
strings into numbers depending on the requirements of the operator.

For the concatenation operator (s), DAX will convert numeric values into
string values:

|Measure 1-1 =2 & 3

In this example, the DAX measure will evaluate to the string value, »23".

For an arithmetic operator such as addition (+), string values will be
converted into a numeric value where possible:

|Measure 1-2 = "2" 4+ "3"

In this example, the DAX measure will evaluate to the numeric value s.

However, there 1s the potential for errors to occur when allowing for
automatic conversion as described. For example, where you are passing
string values to an arithmetic operator that cannot be converted into a
number, your expression will generate an error. Therefore, you must ensure
that correct data types are used for the columns that are used with operators.
Exception handling should be done if there is any possibility of errors
occurring.

Operators

There are four groups of operators in DAX:

e Arithmetic

o Comparison
e Concatenation
e Logical

Table 1-7 shows the different types of operator available within the
arithmetic group, along with an example illustrating typical use:

Operator Meaning Example
+ Addition 3+47=10
- Subtraction or sign 10-7=3
* Multiplication 10 *7=170
/ Division 10/5=2
A Exponentiation 374 =81

Table 1-7: DAX arithmetic operators

When using arithmetic operators it is important to consider the order in
which they need to be applied. If necessary, use parentheses to override the
precedence of an operator. Table 1-8 shows the order of precedence for each
of the different DAX arithmetic operators:

Operator Description

A Exponentiation

- Sign

*and / Multiplication and division
+ and - Addition and subtraction

Table 1-8: DAX arithmetic operator precedence

The following gives an example of where parenthesis can be used
to override the precedence of an operator:

5¥2+6=16

Here, the 5 1s multiplied by the 2 to give 10, before the 6 is added to give /6.
The multiplication operator (~) has higher precedence than the addition
operator (+), so that part of the calculation is calculated first.

However, take a look at this example:

5%(2+6) = 40

Here, the use of the parentheses around 2+6 gives it higher precedence and
causes it to be calculated before the result is multiplied by 5.

Table 1-9 shows the different types of comparison operators available, with
an example illustrating the operator being used:

Operator | Meaning

Example

= Equal to [Firstname] = "lan"
[Number] =

== Strictly equal to true only when number equals 0
and false if blank

> Greater than [Number] > 100

< Less than [Number] < 100

>= Greater than or equal to | [Number] >= 100
<= Less than or equal to [Number] <= 100
< Not equal to [Firstname] <> "lan"

Table 1-9: DAX comparison operators
When using comparison expressions, you should consider the following points:

u » Boolean values are treated as greater than string values.
o String values are treated as greater than numeric or date/time values.
e Numeric and date/time values are treated the same.

Table 1-10 shows the concatenation operator, with some examples
illustrating how it is used:

Operator | Meaning Example
Joins two values together to form "abcd &,, efg" =
& one text value abedefg
2&3="23"

Table 1-10: DAX concatenation op erator

It is important to note that, as we have seen in the previous section on data
types, when using the concatenation operator, DAX will implicitly convert
numeric values to string values.

Table 1-11 shows the different types of logical operators available, with
examples of each operator being used:

Operator | Meaning Example
Logical AND: If both (true) && (true) = true
&& expressions are TRUE, return (true) && (false) =

TRUE; otherwise return FALSE. false

I Logical OR: If either expression | (true) || (true) = true
is TRUE, return TRUE; when (true) || (false) = true

both expressions are FALSE, (false) | (true) = true
return FALSE. (false) || (false) = false

Logical OR: Creates a logical Channel(ChannelName)
IN OR condition between each IN (‘Store’, ‘Online’,
value included in a list of values. | ‘Catalog’)

Table 1-11: DAX logical operators

In addition to the preceding logical operators, DAX also has the logical zwn
and or functions that replicate the functionality of the axo operator (ss) and or
operator () respectively.

The advantage of using these functions over the equivalent operators in a
complex expression is that it is easier to format and read the code. However,
one drawback is that the functions only accept two arguments, restricting you
to comparing two conditions only. To be able to compare multiple
conditions, you will need to nest the functions. In this case, it might be better
to use the zwp operator (ss) instead.

The following gives an example of the syntax for the axo function:

Measure 1-3 =
IF (
AND (
20 > 10,
-20 < -10
)I
"All true",
"One or more false"

)

The following gives an example showing the syntax of the »wo function nested
to compare three conditions:

Measure 1-4 =
IF (
AND (
AND (
10 > 9,
5 < 10

20 > 10

) s
"All true",
"One or more false"

)

The following gives an alternative example of the one given, using the
equivalent zwo operator (ss):

Measure 1-5 =
IF (

10 > 9
&& 5 < 10
&& 20 > 10,
"All true",

"One or more false"

)

Any column in a table can have blank values, which are the result of the data
source containing NULL in values. How a blank value affects the result of a
DAX expression depends on the data type expected and the operator being
used. In some instances, a blank value will be converted into a zero or an
empty string, while in others, it will propagate through as a blank. Table -
12 shows how different DAX operators handle blank values:

Expression DAX
BLANK + BLANK BLANK
BLANK & "Hello" Hello
BLANK + 2 2
BLANK * 2 BLANK

2 / BLANK Infinity
0/ BLANK NaN
BLANK / BLANK BLANK
FALSE OR BLANK FALSE
FALSE AND BLANK FALSE
TRUE OR BLANK TRUE
TRUE AND BLANK FALSE
BLANK OR BLANK BLANK
BLANK AND BLANK BLANK

Table 1-12: Handling blank values in DAX

The =ranx data type represents nulls, blank values, empty cells, and missing
values. The sranx function s used to generate blanks, while the rseranx
function 1s used to verify a blank value.

Working with calculated columns
and measures

Understanding the difference between a calculated column and a measure
(also known as a calculated field) is an important concept that you will need
to learn to begin mastering DAX. At first, they may seem very similar, and
indeed there are some instances where both can be used to obtain the same
result. However, they are different and serve different purposes. Likewise,
they also impact resources in different ways. Calculated columns allow you
to extend a table in your data model by creating additional columns.
Measures allow you to aggregate the values of rows in a table and take into
account any current filters or slicers that are applied.

Calculated columns

You can create new columns by using DAX expressions if you want to extend
a table in your Power BI, Excel Power Pivot, or Analysis Services Tabular
data model. These are referred to as calculated columns. In Excel, each row
of'a column in a worksheet can be defined by using a different expression.
However, calculated columns evaluate the same expression throughout the
column of a table, calculating the appropriate value on a row-by-row basis.

To create a new calculated column in Power BI Desktop, follow these steps:

1. Start on the report page and highlight the table that you want to add a new
column to from the list of tables shown in the Fields pane on the right-

hand side.
2. Right-click on the table name and select New column from the menu, as
shown in Figure 1-1:

r-._.--
s I:f],_7 w Bl ProductCategory

Values v BH ProductSubcategory
Add data fields here v [Promotion
_ ~ [| Sales
Filters
Mew measure

Page level filters New column

Add data fields here Mew guick measure
Report level filters Refresh data

Add data fields here Edit query

Manage aggregations

Figure 1-1: Adding a new column from the Fields pane

Alternatively, you can highlight the table and click on the New Column
button on the Calculations section of the Home ribbon or the
Calculations section of the Modeling ribbon, as shown in Figure I-2:

= Ll Mew Measure [| ”
]

3 JNEW Column

ge Publish

ships L gl Mew Quick Measure

ships Calculations Share

Figure 1-2: Adding a new column from the Home ribbon

Or you can highlight the table and click on the New Column button on
the Calculations section of the Modeling ribbon, as shown in Figure
1-3:

o | H 5 | Contoso Sales for Power BI D

Home View Modeling
= @ O 0

Manage MNew Mew Mew Mew
Relationships Measure Column Table Parame

Relationships Calculations What

Figure 1-3: Adding a new column from the M odeling ribbon

3. Open the formula editor, and enter the DAX expression that will define
your New Column. Figure 1-4 shows the formula editor in Power BI
Desktop:

Hame View Modeling Help
E%l |__I ﬂ !J T? n Data type: Fixed decimal number =
E Ll_-‘ i Format: Currency general =

Manage Mew Mew Mew Mew Sort by ~ a "
elationships Measure Column Table Parameter Column~= $' o| * | .00 Auto o

elationships Calculations What If Sort Formatting

" 1 SalesCost = Sgles[UnitCost] * Sales[SalesQuantity]

Figure 1-4: The formula editor in Power BI Desktop

To create a new column in Excel Power Pivot and Analysis Services, we do
the following;

1. Go into your data model and select the table you want to add the new
column to.
2. Select a cell in the last column labeled Add Column.

3. In the formula editor, write the expression that defines your new
column. Figure 1-5 shows the formula editor in Excel. Unlike Power
BI, in Excel Power Pivot and Analysis Services, the DAX
expression begins with the assignment symbol (-) and not the column
name:

Home Design Advanced

sy [paste Append F—' ; oy L, [y 7 Data Type :
1 B i
J Paste Replace & - '(:" ’ s Farmat : Curr
Faste Fromm From Data From Other Existing Refresh PivotTable
EEI Copy Database = Service™ Souwrces Connections v * $-% >
Clipboard Get External Data
| [Calculate... = J= |=Sales|Unit Cost] * Sales[Quantity]

Figure 1-5: The formula editor in Excel Power Pivot

4. To rename a new column, once you have entered the expression, right-
click on the column name and select Rename Column from the menu, as
shown in Figure 1-6:

. |
uy Create Relationship |

CalculatedCoy

Mavigate to Related Table

Em Copy

Insern Column

Delete Columns

Rename Column

Freeze Columns

Unfreeze All Columns

Hide from Client Tools

. Column Width

Filter *

Descnption...
L

O W W W W W W W W
i |

Figure 1-6: Renaming a column
1t is important to know that, once created, calculated columns are treated just like
another column in a table. And once generated, a calculated value cannot be
changed. Calculated columns can be used in any part of a report and they can be
used to define relationships.

Calculated columns are computed during a data refresh and stored in memory
with the rest of your data model. This is an important point to note when you
are planning and building your data model. On the one hand, with complex
expressions, the time taken to compute them is at the point you refresh the data
and not when you are querying the data. This can improve the user experience,
especially with complex expressions, but you need to remember that each
calculated column will take up space in memory. Although this might not be an
issue with a smaller table, it could have a significant impact on memory use
when you are dealing with large tables. If you have complex expressions

behind your calculated columns, then this could also slow down the time it
takes to refresh the data in your data model.

You would be well advised not to have too many calculated columns in your
data model and to consider whether it would be possible to use a measure
instead, especially if it does not impact the user experience too adversely.

Measures

The other way you can extend your data model is by using measures (also
referred to as calculated fields in Excel 2013). Unlike calculated columns,
which are evaluated row by row using the context of the current row,
measures are used to summarize data by aggregating the values of rows ina
table. They work within the current filter context, which means they are
affected by the current filters, slicers applied, and the highlighted sections of
charts or visuals.

There are two types of measures: implicit and explicit. Implicit measures are
created behind the scenes when you drag a field to the Values area of the
PivotTable Fields list, as shown in Figure 1-7:

PivotTable Fields v
Active All

Choose fields to add to report: {"é} -
Search £

fl Sales Amount
L] fl Sales Rows

> ? Store

Drag fields between areas below:

Filters Columns
Calendar Year -
Rows Values
Category - Sales Amount i

Figure 1-7: Creating an implicit measure in the PivotTable Fields dialog

They are also created when you drag a visual on to the desktop of Power BI,
as shown in Figure 1-8:

+ BR ProductSubcategory

T=is < B Promoction
SalesAmount T4
= /\ E Sales
Filters Z DiscountAmo...
% DiscountQua...
Visual level filters _
B Return %
dellzz T u % ReturnAmount
is (Al _
= Z ReturnCuantity
Page level filters # % SalesAmount
$83£+bn Add data fields here X SalesQuantity
' % TotalCost
Report level filters °
2 UnitCost
Add data fislds here
Z UnitPrice

Figure 1-8: Creating an implicit measure with a visual in Power BI Desktop

An explicit measure, on the other hand, 1s a measure that is specifically
created by you.

A measure must be created if you want to conduct an operation on aggregate
values instead of values on a row-by-row basis. For example, if you need to
calculate the percentage ratio of two columns, you will need to create a
measure that calculates the ratio based on the sum of each column. The
following measure calculates the percentage of returns to sales by dividing the
sum of items returned by the sum of items sold:

Return % =
DIVIDE (
SUM (Sales[ReturnQuantity]),
SUM (Sales[SalesQuantity])

Measures are calculated once for everywhere they are used in a report. They
are re-calculated every time a report page loads or a user changes a filter or
slicer or highlights part of a chart:

Return % by ChannelMame
1.0%

0.58%

0.6%

0.4%

0.2%

0.0%

Store Reseller Online Catalog

Figure 1-9: A measure being used in a column chart

In Figure 1-9, a measure is used to calculate the number of returns over the
number of sales. This 1s used for the value in the column chart, with the sales
channel used for the axis. In this example, the measure is calculated four
times, once for each time the filter context changes to reflect each of the four
different stores.

To create a new measure in Power BI Desktop, follow these steps:

1. Start on the report page and highlight the table that you want to add the
new measure to, from the list of tables shown in the Fields pane on the
right-hand side.

2. Next, right-click on the table name and select New measure from the
menu, as shown in Figure 1-10:

Values

Add data fields here v B Promotion
_ ~ BH Sales
Filters
New measure
F"ﬂgE' level filters MNew column
Add data fields here Mew quick measure
Report level filters Refresh data
Add data fields here Edit query

Figure 1-10: Creating a new measure from the Fields pane

To create a new measure in Excel Power Pivot and Analysis Services, we do
the following;

1. Go into your data model and select the table you want to add the measure
to.

2. Select a blank cell in the calculation area.

3. In the formula editor, write the expression that defines your new
measure. Figure 1-11 shows a couple of measures in the calculation area
of an Excel table:

$9.99 50.00 $5.09 $9.99 £5.09
$9.99 50.00 $5.09 $9.99 £5.09
$9.99 $0.00 $5.09 $9.99 £5.09
$9.99 50.00 $5.09 $9.99 £5.09
$9.99 $0.00 $5.09 $9.99 £5.09

Sales Amount: 54,21...
Sales Rows: 12,535

Figure 1-11: M easures in the calculation area of a Excel Power Pivot table

The syntax used to create a measure differs slightly depending on the tool you
are using. With Power BI, you use the - assignment operator, whereas with
Excel and Analysis Services, you use the :- assignment operator. If you use
the :- assignment operator in Power BI, it will automatically be converted
into the - operator.

So, for example, Figure 1-12 shows an example of the syntax used to create a
measure in Power BI Desktop:

Home Wiew todeling Help
e, M cut Moy L{\ - r [L sl I @Teﬂ box
N E L} oﬁ! = I_"‘"“. i I [_'Image

E& copy
Paste ¥ E . Get Recent Enter it Refresh Mew MNew AskA Bulmns L'ESha -
Al Al Data™ Sources™ Data ﬂuerles' Page = WVisual Question s
Clipboard External data Insert

M » o+ 1 Sales Amount = SUMX (Sales, Sales[SalesQuantity] * Sales[UnitPrice]) |

Figure 1-12: A measure being created using the formula editor in Power BI Desktop

On the other hand, Figure 1-13 shows an example of the syntax used to create
a similar measure in Excel:

Home Design Advanced
] 55 Paste Append D r_;l D [_L E iz Data Type : -
| " || @ '¢" Format : Currency ™

L &5 Paste Replace
Paste From From Data From Other Existing Refresh PrvotTable 1 O

E® copy Database = Service™ Sources Connections - - $-% > T4
Clipboard Get External Data Formatting
l [StoreKey] = 2 |Sa|e5 Amount:=SUMX [Sales, Sales[Quantity] * Sales[Unit Price])

Figure 1-13: A measure being created using the formula editor in Excel Power Pivot

Although DAX requires measures to be defined within a table, they can be
moved between tables without affecting their functionality. In fact, it is good
practice to keep general measures under one table with a name such as Key
Measures.

Calculated columns versus
measures

Although they may look similar, calculated columns and measures operate
very differently. They both use DAX expressions, but they differ in the point
at which they are calculated and in the context of their evaluation:

e The values of calculated columns are calculated during a data refresh
and they are evaluated using the current row context. They also take up
memory and disk space and can slow down data loading times during
data refreshes. However, once loaded, they do not impact performance.

e A measure is executed every time a value uses it in a report or
chart. Measures are re-calculated every time a page loads. They are
also re-calculated when filters or slicers are changed or a user
highlights different parts of a chart or visual. A measure does not add to
the space used by a data model, but it may impact the speed of user
interactions. Measures operate on aggregates that are defined by the
current filter context.

You will need to use a calculated column whenever you want to do the
following:

Use the value in a slicer.

Use the value in rows or columns of a pivot table.
Use the value on the axes of a chart.

Use the value as a filter condition in a DAX query.
Define an expression that is bound to the current row.

You will need to define a measure whenever you want to do the following:

e Use a value that reflects a user's selection of filters, slicers, or
highlighted visuals.

e (Calculate a ratio.

o Calculate a percentage.

It is sometimes possible to calculate the same value using either a calculated
column or a measure, using different DAX expressions. In most cases, where
this 1s possible, you should use a measure, as this will not increase the size
of your data model and use extra memory or disk space. This is especially
important if you are working with a table that contains a large number of
records.

When naming measures, you should not include the table name in the measure
name. Although a measure is created under a table, it does not strictly belong
to that table. If you do not include the table name, it can easily be moved
between tables if necessary. It also makes it easier to identify as a measure.
On the other hand, calculated columns should include the table name.

Evaluation contexts — part 1

Understanding the concept of the evaluation context in DAX is probably the
most important concept you will need to learn, if you are to master the use of
DAX. In this section, we will have a brief introduction to the concept and
will take a more in-depth look in later chapters.

Evaluation contexts are the basis of advanced DAX functionality. They are
used to determine the evaluation of a DAX formula and the corresponding
result that's given, which will vary depending on the current context. It is this
ability that enables you to perform dynamic analysis, in which the results of a
DAX formula can change to reflect the current row or a cell selection, or any
filters or slicers that may be applied. Understanding context and using context
effectively 1s essential for building powerful DAX formulas and being able
to effectively troubleshoot problems with DAX expressions.

There are two types of evaluation contexts in DAX:

e Row context
o Filter context

You may also see references to a query context in Microsoft documentation,
but this is essentially another form of filter context.

Row context

The easiest way to think of row context is as the current row in a table. It
applies when you add a calculated column to a table. When you use an
expression to define your calculated column, it is executed for every row in
the table. For example, if you have a table with a thousand rows in it, the
expression will be evaluated one thousand times, once for every row in the
table, each with a different row context.

The row context can use values from the same row of the table or rows from

Sale Amount >
£73.66

£110.49
£140.26
£280.52
£738.00
£176.00
£377.00
£504.00
£75.00
£272.00
£3,637.20
£447.00
£199.98
£178.00
£1,198.00

related tables:
[Sale amount] - fr |=Sales[Quantity] = Sales[Unit Price]

|]| Deliveryrat.. & B3] Order Date B3| Due Date Bl Delivery Date B3| quantity B3| unitprice B3| unit Discount 8| unitcost B[Netprice 0|
12/03/2007 25/03/2007 18/03/2007 2 $36.83 $2.58 $18.78 $34.25
12/03/2007 19/03/2007 21/03/2007 3 $36.83 $2.58 $18.78 $34.25
03/03/2007 14/03/2007 14/03/2007 2 $70.13 $4.91 $32.25 $65.22
03/03/2007 14/03/2007 10/03/2007 4 $70.13 $4.91 $32.25 $65.22
06/03/2007 16/03/2007 12/03/2007 2 $369.00 $25.83 $188.13 $343.17
06/03/2007 13/03/2007 14/03/2007 4 $44.00 $3.08 $22.43 $40.92
22/02/2007 01/03/2007 06/03/2007 2 $188.50 $13.20 $86.68 $175.31
19/03/2007 29/03/2007 29/03/2007 3 $168.00 $11.76 $85.65 $156.24
31/03/2007 13/04/2007 11/04/2007 3 $25.00 $1.75 $11.50 $23.25
03/02/2007 12/02/2007 11/02/2007 4 $68.00 $4.76 $31.27 $63.24
06/02/2007 12/02/2007 15/02/2007 2 $1,818.90 $127.32 $836.45 $1,691.58
06/02/2007 14/02/2007 15/02/2007 3 $149.00 $10.43 $75.96 $138.57
07/02/2007 19/02/2007 19/02/2007 2 $99.99 $7.00 $50.98 $92.99
09/03/2007 21/03/2007 15/03/2007 2 $89.00 $6.23 $40.93 $82.77
10/03/2007 23/03/2007 18/03/2007 2 $599.00 $41.93 $275.46 $557.07
10/03/2007 20/03/2007 16/03/2007 4 $599.00 $41.93 $275.46 $557.07

Sales Amount: $4,219,917.90
Sales Rows: 12,535

Figure 1-14: A calculated column being created in Excel Power Pivot

£2,396.00

Figure [-14 shows a calculated column called Sale amount that multiplies the
value in the Quantity column by the value in the Unit Price column. Once the
data is loaded into the data model from the data source, the calculated column
1s populated by iterating through each row of the table and calculating the
value based on the values contained in the Quantity column and the Unit

Price column, for that row. In other words, the value of the calculated column
1s generated based on the row context as defined by that individual row.

If you have a relationship between tables, the expression used to define a
calculated column can also access the columns of a related table by using the

reLaTED fUNCtiON:

T Product

1 ProductKey
£1 Product Code
E Product Name
7 Product Description

£ ProductSubcategory...
1 Manufacturer

T Sales

] StoreKey
] ProductKey

[PromotionKey
1 CurrencyKey
[C] CustomerKey
[OrderDatekey
[F] DueDateKey

Figure 1-15: The one-to-many relationship between Product and Sales

In Figure 1-15, we can see that there is a one-to-many relationship between
the Product table and the Sales table. By creating a calculated column with the
following expression, it's possible to add the total weight to the Sales table by
multiplying the value of the Quantity column by the value of the Weight column
in the related Product table:

IF (
ISBLANK (RELATED ('Product' [Weight])),
0,
[Quantity] * RELATED ('Product' [Weight])
)

The following screenshot, Figure 1-16, shows the new total weight column
added to the Sales table, with values generated for each row:

| rrotal weignt] ~ fr |2 IFISBLANK(RELATED("Product TWeight])), 0, [Quantity] * RELATED('Product TWeight]))

"4 B0 oste 3] bue oate] vetveryoare @ Quarety @ Unitorce @ untpiscount @ uniecost @ wetore B s moure)

02/05/2007 15/05/2007 10/05/2007 1 ! ;
$9.99 $0.00 $5.09 $9.99

02/05/2007 08/05/2007 11/05/2007 1

02/05/2007 09/05/2007 12/05/2007 1 $9.99 $0.00 45.09 $9.99
02/05/2007 11/05/2007 14/05/2007 1 $9.99 $0.00 $5.09 $9.99
01/07/2007 09/07/2007 10/07/2007 1 $9.99 $0.00 45.09 $9.99
01/07/2007 10/07/2007 11/07/2007 1 $9.99 $0.00 45.09 $9.99
01/07/2007 11/07/2007 12/07/2007 1 $9.99 $0.00 $5.09 $9.99
01/07/2007 12/07/2007 13/07/2007 1 $9.99 $0.00 45.09 $9.99
01/07/2007 14/07/2007 08/07/2007 1 $9.99 50.00 45.09 $9.99
01/07/2007 07/07/2007 09/07/2007 1 $9.99 $0.00 $5.09 $9.99
01/07/2007 08/07/2007 10/07/2007 1 $9.99 $0.00 45.09 $9.99
01/07/2007 09/07/2007 11/07/2007 1 $9.99 50.00 45.09 $9.99
05/07/2007 14/07/2007 12/07/2007 1 $9.99 $0.00 $5.09 $9.99
05/07/2007 15/07/2007 13/07/2007 1 $9.99 $0.00 45.09 $9.99
05/07/2007 16/07/2007 14/07/2007 1 $9.99 $0.00 $5.09 $9.99
05/07/2007 18/07/2007 16/07/2007 1 $9.99 $0.00 $5.09 $9.99

Sales Amount: $4,219,917.90
Sales Rows: 12,535

Figure 1-16: The total weight column added to the Sales table

£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99
£9.99

Total Weight |+
5.5
5250
5.5
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

In the preceding example, the rssranx function has been used in conjunction
with the 1= function to return a zero when a value is not returned from the
related table. This would happen when a product in the Sales table does not

exist in the related Product table.

Filter context

The filter context is more complex to understand than the row context, but it
can be defined simply as the set of filters that are applied to a data model
before the evaluation of a DAX expression begins, which will alter the value
returned.

The easiest way to illustrate the filter context is by using a PivotTable:

Sales Amount

Row Labels

Audio

Cameras and camcorders
Cell phones

Computers

Games and Toys

Home Appliances

Music, Movies and Audio Books

TV and Video
Grand Total

Column Labels | -
* CY 2007

512,856.27
5399,051.85
553,762.84
$338,170.40
$11,735.03
$463,074.67
514,179.41
$324,392.14

CY 2008 CY 2009 Grand Total

$12,240.48 S22,019.91 $47,116.66
5268,123.49 5194,420.20 5861,595.54
581,481.47 5105,493.78 5240,738.09

$310,194.5 _':Jl $255,491.12 $903,856.11

510,516.64 520,580.90 $42,832.57
5415,946.41 $547,267.18 51,426,288.26
519,454.06 513,455.01 547,083.48
$125,036.20 5200,473.85 5650,402.19

$1,617,722.61 51,242,993.34 $1,359,201.95 54,219,917.90

Figure 1-17: Pivot table showing total sales amount by calendar year for product categories

In Figure 1-17, the PivotTable shows the total sales amount of products by
calendar year for each product category. The highlighted cell, showing

$310,194.59, has a filter context for the calendar year 2008 and the product
category of computers.

The filter context has the following sources of filter:

Row selection
Column selection
Slicer selection
Filter selection

A PivotTable filter

Figure 1-18 shows a Power BI report that has slicers for product category
and channel. The total sales amount shown in the card visual is the total sales
amount with a filter context for the product category of Cell phones and
where the sales channel is equal to Catalog:

| H S = | Contoso Sales for Power Bl Designer - Power Bl Desktop

m Home View Modeling Help
Cut E—, D [-1 |:|—| | | e Text box
7 =

Copy l__';. Image
Paste _ Get Recent Enter Edit Refresh MNew Mew AskA Buttons
Format Painter pata~ Sources~ Data Queries * Page v Wisual Question - FE Shapes -
Clipboard External data Insert

$73.95M

Figure 1-18: Power BI report with slicers for product category and channel

The filter context will automatically propagate through relationships defined
in the data model. In Excel Power Pivot and SQL Analysis Services, only the
one-to-many direction is supported, but Power BI has the facility for
relationships to be bi-directional.

With a one-to-many relationship, a filter applied to the one side of the
relationship automatically filters the rows of the table on the many side of the
relationship. If the table on the many side has another table that has a one-to-
many relationship with it, the filters do not affect that table, unless you set the
relationship to be bi-directional (in Power BI only). We will look at
relationships between tables in more detail when we come to looking at data
modeling.

Using the CALCULATE function

So far, we have only looked at implicit filter context, a context created when
you use filters or slicers on a Power Bl report or add rows and columns to a
PivotTable in Excel. However, it is also possible to create an explicit filter
context using the DAX carcurare function.

The carcurare function in DAX evaluates an expression, as an argument, with a
context that 1s modified by the filters that are passed in one or more additional
arguments to the function. It is possibly the most important and complex
function in the whole of the DAX language. Although it appears very simple
when you first look at it, how it can be used and how it can alter an existing
filter context can quickly become confusing.

While other functions can remove either part or all of an existing filter
context, the carcurare function, along with the associated carcurareraeie function,
are unique in DAX in that they are the only functions that can alter the context.
It 1s this ability that makes them so powerful and so useful to you as a BI
professional.

The following is the syntax of the carcurare function:

|CALCULATE (<expression>, <filterl>, <filter2>, ..)

The function has only one mandatory argument: the expression that is to be
evaluated. It will then take one to many optional filter arguments. These
optional filter arguments are combined to form the overall filter, which is
applied to the expression given as the first argument.

Some restrictions apply to Boolean expressions used as arguments:

o Expressions cannot reference a measure.

e Expressions cannot use a nested carcurare function.

e Expressions cannot use any function that scans a table or returns a table,
including aggregation functions.

However, expressions can use functions that look up single values or
calculate a scalar value.

The power of the carcurars function comes from its ability to alter the existing
filter context of the expression passed in the first argument, by the » number of
filter conditions specified by the following arguments. This is done according
to the following:

o Ifthe filter context specified by a filter condition already exists, it will
override the existing filter context with the new one specified in the
expression.

o Ifthe filter context does not exist at all, it will add a new one according
to the filter conditions specified.

As you can see, the syntax for the carcurare function is straightforward but
following what it is doing i1s more complex. The best way to show this is
through a hands-on example.

In the following example, we have what is possibly the most common
scenario for using the carcurare function, which is to take a value and calculate
what percentage it is of an overall total.

Let's start by creating a new measure to calculate the sum of a column called
SaleQuantity in a table called Sales, by using the following DAX expression:

SumOfSalesQuantity =
SUM (Sales[SalesQuantity])

In the screenshot shown in Figure 1-19, the measure has been added to a table
in Power BI, along with the manufacturer. The manufacturer becomes the filter
context for the measure, giving a breakdown of sales quantity by
manufacturer:

Home View Maodeling Help
— Data type: Home Table:
5 @38 3

Format: Data Category: Uncategorized
Manage Mew Mew Mew Mew Sort by AT . o _
Relationships Measure Column Table Parameter Column ' .o Aute . Default Summarization: Don't summarize
Relationships Calculations What If Sort Formatting Properties
ol
Manufacturer SumOfSalesCuantity
E FY
A. Datum Corporation 2,400,635
ﬁg Adventure Works 2,421,433
Contoso, Lid 17,690,352
Fabrikam, Inc. 2,982,037
Litware, Inc. 617,243
Northwind Traders 379,758
Proseware, Inc. 3,046,735
Southridge Video 2,805,700
The Phone Company 2427,158
Wide World Importers 2,129,359
Total 36,900,410

Figure 1-19: The SumOfSalesQuantity measure added to a table in Power BI Desktop

Now, to be able to calculate the sales quantity of each manufacturer as a
percentage of the overall sales quantity, each row will need to know what the
overall sales quantity is. To do this, you need an expression that will amend
the filter context by removing the manufacturer from the filter. This i1s where
the carcurare function comes 1in.

The next step 1s to create another measure, which again will calculate the sum
of the SalesQuantity column, but uses the arr. function to amend the current
filter context:

TotalSalesQuantity =

CALCULATE (
SUM (Sales[SalesQuantity]),
ALL ('Product' [Manufacturer])

In this code, we see the following;

o The first argument calculates the total sum of values in the
SalesQuantity column of the Sales table.

o The next argument, the first filter argument, will effectively amend the
current filter context by using the zrr function to remove any existing
filters on the Manufacturer column of the Product table.

Figure 1-20 shows this measure added to the Power BI table:

Home View Modeling Help Format Data / Drill
_— Data type:
=5 @ & &
E Ll_? Format:
Manage Mew Hew Mew MNew Sort by o .
Relationships Measure Column Table Farameter Column o Auto
Relationships Calculations What If Sort Formatting

ol

Home Table:
Data Category: Uncategorized
Default Summarization: Don't summarize

Properties

Manufacturer

@ -

SumOfSalesQuantity TotalSalesQuantity

58

A. Datum Corporation 2400,635 36,900,410
Adventure Works 2,421,433 36,900,410
Contoso, Ltd 17,690,352 36,900,410
Fabrikam, Inc. 2,982,037 36,900,410
Litware, Inc. 617,243 36,900,410
Morthwind Traders 379,758 36,900,410
Proseware, Inc. 3,046,735 36,900,410
Southridge Video 2,805,700 36,200,410
The Phone Company 2,427,158 36,900,410
Wide World Importers 2,129,359 36,900,410
Total 36,900,410 36,900,410

Figure 1-20: The TotalSalesQuantity measure added to a table in Power BI Desktop

As you can see, for each row, the filter context has been altered by the
TotalSalesQuantity measure and returns the overall sales quantity, regardless

of the manufacturer.

With these two new measures, it is possible to create a measure to calculate
the sales quantity of each manufacturer as a percentage of the overall sales

quantity:

%$SalesQuantity =
DIVIDE (

// The sum of sales quantity measure - current filter context
[SumOfSalesQuantity],

// The sum of sales quantity measure - current filter context altered
// to include ALL manufacturers

[TotalSalesQuantity]

In this example, we use the nrvroe function. This function divides the value
returned by the measure passed as the first argument (the numerator), by the
value returned by the measure passed as the second argument (the
denominator). The orvroe function also allows for an optional third argument
that specifies the alternative value to be returned when division by zero
results in an error. When this third argument is not provided, as in this
example, the default alternative of zranx 1s returned.

Figure 1-21 shows this percentage measure added to the Power BI table:

Home View Modeling Help
| Data type: Home Table:
B P EE 3

Format: Data Category: Uncategorized
Retondps Nere Comn Tk Pameter Coumn + hauto 3| Defaut Summariztion: Dn't summariz
Relationships Calculations Whattf Sort Formatting Properties
Il
o llﬂanufacturer SumOfSalesQuantity %SalesQuantity
A. Datum Corporation 2400635 6.51%
ﬁE Adventure Works 2421433 6.56%
Contoso, Ltd 17,690,352 47.94%
Fabrikam, Inc. 2,082,037 8.08%
Litware, Inc. 617 243 1.67%
Northwind Traders 379,758 1.03%
Proseware, Inc. 3,046,735 8.20%
Southridge Video 2.805,700 7.60%
The Phone Company 2427158 6.58%
Wide World Importers 2,129,359 5.77%
Total 36,900,410 100.00%

Figure 1-21: The %SalesQuantity measure added to a table in Power BI Desktop

Finally, it's possible to rewrite this measure as a self-contained measure that
doesn't require the intermediate measures of SumOfSalesQuantity and
TotalSalesQuantity.

Let's have a look at the following example, which demonstrates this:

%$SalesQuantity2 =
DIVIDE (
// The sum of sales quantity - current filter context
SUM (Sales[SalesQuantity]),
// The sum of sales quantity - current filter context altered
// to include ALL manufacturers

CALCULATE (
SUM (Sales[SalesQuantity]),
ALL ('Product'[Manufacturer])

This is a relatively simple example of the carcurare function being used. In chapt
er 5, Getting it into Context, there will be some more complex examples
when we look at evaluation contexts in more detail.

Summary

In this chapter, we covered a brief introduction to the DAX language, looking
at what it is and why learning it is important if you want to get the most out of
Excel Power Pivot, SSAS Tabular, or Power BI. You should now have an
understanding of the different data types and operators available in DAX and
how these operators implicitly convert data to the required type. You have
learned about calculated columns and measures, including the differences
between them and how and when you can make use of them.

You have also learned how to make use of these features in DAX to expand
your data model, creating new information from existing data and giving you
even greater insights into your data. Finally, you have learned about the
evaluation context, with the row context and the filter context, and how you
can modify an existing filter context using the carcurare function.

In the next chapter, we will move on to look at using variables in DAX
formulas and how these can make your DAX code easier to read, as well as
potentially more efficient.

Using DAX Variables and
Formatting

In this chapter, we will focus on how to use DAX variables and the overall
impact of using them in your code. The usage of DAX variables will not only
improve the re-usability of your code but potentially make it more efficient
as well. Apart from this, we will talk about the recommended formatting
rules for DAX code and how using these features will help us identify and
debug errors in our code.

Then, you will be introduced to the varz and rerury keywords and will learn
how to effectively use them within your DAX code. We will also go through
a practical example of using variables and formatting rules to debug a DAX
measure that is not working correctly.

This chapter has been broken down into the following sections:

e Getting started with DAX variables
e Formatting your DAX code
e Debugging errors in your DAX code

Getting started with DAX variables

Variables were first introduced into the DAX language with Power Bl in
2015 and with the 2016 versions of Excel and SSAS Tabular.

Variables allow you to store hard coded values or the results that are
returned by a DAX expression. They can store both scalar values and tables
and can be used within the definitions of calculated columns, measures, and
tables.

A variable 1s declared using the var keyword, and the overall process of
declaring and using a variable uses the following syntax:

VAR <variableName> = <DAX expression>
RETURN <DAX expression including variableName>

When defining an expression, you can use as many variables as you need;
each variable is declared using its own var keyword. Variables can be used
for declaration purposes when defining other variables, as well as to return
values in the expression given after the rervrn keyword.

The rerory keyword is used to define the return expression, which is then used
to define the calculated column, measure, or table.

Once a variable has been declared and initialized, it cannot be assigned
another value. So, for example, the following would produce an error:

1
varOne + 1

VAR varOne
VAR varOne
RETURN varOne

Instead, you should declare a second variable and then use the first variable
as part of the second variable's declaration. Then, you can use the second
variable in the expression being used with the zerury keyword, as shown in
the following example:

VAR varOne = 1
VAR varTwo = varOne + 1
RETURN varTwo

Variables in DAX are not declared with data types; they are automatically
allocated to the type of the value being assigned to them.

In the following example, the varrextexampie Variable is being assigned with
the data type of text:

VAR varTextExample = "Hello World"
RETURN varTextExample

In the next example, the varrapierxampie Variable is being assigned as a table,
which, in this case, is a copy of the Products table that has been filtered so
that it only includes products where the ClassName is equal to Deluxe:

VAR varTableExample = FILTER ('Product', 'Product' [ClassName] = "Deluxe")
RETURN varTableExample

When using variables of different types with an operator, they will follow the
same rules of implicit data type assignment, which we described in chapter 1,
What Is DAX?. In the following example, the first variable, varone, 1S assigned
the numeric data type, while the second variable, varrwo, 1s assigned the text
data type. The third variable, varrnree, 1s declared by combining the first two
variables using the concatenate operator, and 1s automatically assigned with
a data type of text:

NumberAndTextl =
VAR varOne = 1
VAR varTwo = "2"

VAR varThree = varOne & varTwo
RETURN varThree

Figure 2-1 shows the output of the NumberAndTextl measure, which was
defined using the concatenate operator in the preceding code:

12

Figure 2-1: The result of the NumberAndText1 measure

In the following example, both the first and second variables are assigned,
just like in the previous example. However, on this occasion, the third
variable combines the first two variables using the addition operator. This
time, it is automatically assigned as a numeric data type:

NumberAndText2 =

VAR varOne = 1

VAR varTwo = "2"

VAR varThree = varOne + varTwo
RETURN varThree

Figure 2-2 shows the output of the NumberAndText2 measure, which was
defined using the addition operator in the preceding code:

3.00

Figure 2-2: The result of the NumberAndText2 measure

When it comes to naming variables, you cannot use names that are already in
use by tables, or names that are used as DAX keywords. In addition, the
following are the limitations when it comes to naming a variable:

Variable names cannot contain blank spaces

Delimiters such as square brackets and apostrophes are not allowed
The supported characters are a-z, A-Z, 0-9

0-9 cannot be used as a first character

A double underscore (_) is allowed as a prefix of a name

Variable nesting

It is possible to nest variables within the declaration of another variable,
which offers multiple levels of scope. Each level of variable nesting starts
with the var keyword and ends with the zeruzy keyword. An expression may
only refer to variables that have been declared within the same level of
scope or higher.

The following measure definition is an example of variable nesting:

NestedVariableExamplel =
// The first level of scope is defined by the first VAR keyword
VAR varLevelOneA = "Level 1"
VAR varLevelOneB =
// The second level of scope is defined using the VAR
// keyword in the definition of this variable.
// Variables within this scope can access variables from
// this level or from the first level of scope.
VAR varLevelTwoA = varLevelOneA & " and Level 2"
VAR varLevelTwoB = varLevelTwoA
// The second level of scope is closed with the RETURN keyword
RETURN varLevelTwoB
// Control is passed back to the first level of scope.
// Variables defined in the second level of scope cannot be
// directly referenced by this first level.
RETURN varLevelOneB

Figure 2-3 shows the output of the NestedVariableExample1 measure that
was defined using the preceding code:

Level T and Level 2

Figure 2-3: The result of the NestedVariableExamplel measure

This example can be broken down as follows:

1. The first level of scope is defined with the first use of the var keyword.
2. The varreveionea variable is declared with the text "Level 1".

3. The second level of scope is defined using the var keyword within the
declaration of the second variable, varrevelones.

4. The varreveitwon variable is declared using the varreveionea variable
(which it can access since it is from a higher level of scope)
concatenated with the text "and Level 2". The varieveirwor variable now
holds the value "Level I and Level 2".

5. The varreveimwon variable is declared using the value stored in
varLevelTwoB, Which 1t can access since it 1s defined at the same level. The
varlevelTwon Variable now also holds the value "Level I and Level 2.

6. The second level of scope 1s closed with the rerury keyword, which
returns the value stored in the varreveirwor variable to
the vartevelones variable. The varreveiones Variable now also holds the
value "Level I and Level 2.

7. The first level of scope 1s closed with the second zeruzy keyword, which
returns the value stored in the varieveiones variable to
the Nested VariableExample1 measure.

The following code takes variable nesting to the next level. See if you can
follow what it is doing while using the previous example as a guide:

NestedVariableExample2 =
VAR varLevelOneA = "Level 1"
VAR varLevelOneB =
VAR varLevelTwoA = " & Level 2"
VAR varLevelTwoB =
VAR varLevelThree = varLevelOneA & varLevelTwoA
RETURN varLevelThree
RETURN varLevelTwoB
VAR varLevelOneC =
VAR varLevelFour = varLevelOneB & " & Level 3"
RETURN varLevelFour
RETURN varLevelOneC

Figure 2-4 shows the output of the Nested VariableExample2 measure that
was defined using the preceding code:

Level 1 & Level 2 & Level 3

Figure 2-4: The result of the Nested VariableExamp le2 measure

This example introduces a third level of scope within the declaration of the
varteveltwon variable. This level has access to the variables declared in level
1 and level 2, as well as those declared at its own level. There 1s another
level of scope that's created in the declaration of the varreveionec variable.
This level of scope only has access to the variables that have been declared
in its own level and those defined in level 1. It cannot access variables that
have been declared in the scope of levels two and three.

Using variables with measures,
calculated columns, and tables

Using variables when you define your measures will make your DAX code
much easier to read. In some cases, it can also make your code perform more
efficiently. We will look at the potential of improving code performance using
variables in more detail when we look at optimizing DAX queries in chapter
13, Optimizing Your DAX Queries.

The following code defines a measure that counts the number of products in a
table, where the value of the ClassName column is equal to Deluxe:

Deluxe Products =
VAR varDeluxeProducts =

FILTER ('Product', 'Product'[ClassName] = "Deluxe")
RETURN COUNTROWS (varDeluxeProducts)

This example can be broken down as follows:

1. The measure 1s defined using the name Deluxe Products.

2. The var keyword is used to declare a variable called varpeiuxerroducts.

3. The variable is defined using the rrirer function, which references the
Product table and the filters for rows where the value in the ClassName
column is equal to Deluxe.

4. The varpe1uxerroaucts variable inherits the table type and is used as the
argument to the coontrows function, which is used by the rerury keyword to
return the number of rows in the filtered table.

When using variables in an expression that is used to define a calculated
column, you automatically have access to the values of the other columns in
the same row.

The following example creates a new column called UnitProfit that calculates
the profit for each product, based on the unit price minus the unit cost of each
product:

UnitProfit =

VAR varUnitCost = 'Product' [UnitCost]
VAR varUnitPrice = 'Product' [UnitPrice]
RETURN varUnitPrice - varUnitCost

This example can be broken down as follows:

1. The column is defined with the name UnitProfit.

2. The first var keyword 1s used to declare a variable called varunitcost,
which stores the value held by the UnitCost column of the Product table
for the current row.

3. The second var keyword is used to declare a variable called varuniterice,
which stores the value held by the UnitPrice column of the Product table
for the current row.

4. These two variables are then used with the rerury keyword and the minus
operator to take the value of the varunitcost variable away from the value
of the varuniterice variable, giving the value of unit profit.

The screenshot in Figure 2-5 shows the Product table with the new UnitProfit
column added:

UnitCost ~ | UnitPrice |~ - = UnitProfit -

510.69 20,96 £10.27
S6.63 513 £6.37
S6.63 513 £6.37
S56.63 513 £6.37
S6.63 513 £6.37

$25.49 S50 £24.51

$25.49 S50 £24.51

25 .49 550 £24.51

£25.49 S50 £24.51
59,13 517.9 £8.77

511.68 522.9 £11.22

$26.97 552.9 £25.93
$8.11 515.5 £7.79
S6.07 11.9 £5.83

§7.9 515.5 £7.6
8 7.09 513.% £6.81

Figure 2-5: The Product table with the new UnitProfit column added
When using variables in the definition of a calculated column, it is important to

remember that the rerurv keyword should only return a single value, and not a table.

Finally, variables can be used in the definition of an expression to create a
new table.

The following example creates a new table called Deluxe Products Top 20
Sellers that shows the top 20 best-selling deluxe products by sales quantity.
This new table contains columns for the product name, the total sales quantity,
and the total sales amount:

Deluxe Products Top 20 Sellers =
VAR varDeluxeProducts =
FILTER (

'Product’',
'Product' [ClassName] = "Deluxe"
)
VAR varDeluxeProductsSummarized =
SUMMARIZE (
varDeluxeProducts,
'Product' [ProductName],
"TotalSalesQuantity", SUM (Sales[SalesQuantity]),
"TotalSalesAmount", SUM (Sales[SalesAmount])
)
VAR varDeluxeProductsTop20Sales =
TOPN (
20,
varDeluxeProductsSummarized,
[TotalSalesQuantity]
)
RETURN
varDeluxeProductsTop20Sales

This example can be broken down as follows:

1. The table 1s defined with the name Deluxe Products Top 20 Sellers.

2. The first var keyword is used to declare a variable called
varbeluxeProducts, Which stores the values returned by the rrirer function.
This function filters for rows in the Product table that have a ClassName
equal to Deluxe.

3. The second vaz keyword is used to declare a variable called
varbeluxeProductssummarized, Which stores the value returned by the sumzrize
function. This function takes the table stored in
the varpeluxerroducts variable and groups it by the ProductName column.
Then, it adds new columns, which calculate the sum of sales quantity and
sum of the sales amount for each product.

4. Finally, the third var keyword is used to declare a variable called
varDeluxeProductsTop20sales. 1 NS variable uses the roen function to filter
the varpeluxerroductssummarized Variable for the top 20 deluxe products,
based on the value of TotalSalesQuantity.

The screenshot in Figure 2-6 shows the contents of the new Deluxe Products
Top 20 Sellers table:

ProductName

TotalsalesQuantity TotalSalesAmount

Contoso Bluetooth Active Headphones L15 Red
Contoso Bluetooth Active Headphones L15 White

Contoso Bluetooth Active Headphones L13 Black
Proseware High-Performance Business-Class Laser Fax X200 Black

Contoso SLR Camera X143 Grey

The Phone Company PDA Phone 3.7 inches M3240 Black
Contoso SLR Camera X142 Black

Contoso DVD 14-Inch Player Portable L100 Silver
Contoso Integrated Business Phone With card L10 White
Contoso DVD 15-Inch Player Portable L200 Black
Contoso 8GB Clock & Radio MP3 Player X850 Black

SV DVD 15-Inch Player Portable L200 Black

A. Datum Consumer Digital Camera E100 Fink

5V DVD 60 DVD Storage Binder L20 Red

Contoso Integrated Business Phone With card L10 Black
The Phone Company PDA Wifi 4.7-inch L2390 Black
Contoso DVD 15-Inch Player Portable L200 Silver

Proseware Color Ink Jet Fax with 5.8 GHz Cordless Handset X250 Grey

A, Datum Super-zoom Digital Camera X300 Pink
Adventure Works LCD24W X300 Black

62820
61420
28740
22052
21917
21758
21653
21525
21477
21465
21456
21430
21384
21360
21316
21288
21267
21256
21251
21227

£6,157,691.437
£7,974,490.0205
£7,628,441.0517
£5,382,373.76
£13,933,838.86
£7,063,894.2
£13,578,190.08
£5,508,665.5201
£887,276.04
£6,126,252.0323
£6,317,358.7215
£6,117,263.6526
£2,908,947.04
£481,252.1784
£880,913.46
£7,960,806.2
£6,073,794.1516
£4.771,5854
£6,065,263
£18,149,482.12

Total

548062 £138,969,088.9357

Figure 2-6: Table showing output from the new Deluxe Products Top 20 Sellers table
When using variables in the definition of a calculated table, it is important to

remember that you must return a table with the rerorv keyword and not a single value.

Formatting your DAX code

In addition to using variables to make your DAX code easier to read, it is also
important to format your code in some way. While there is no official set of
rules for formatting your DAX code, following some good formatting
guidelines is essential if you want to make DAX easier to work with. Not only
1s poorly formatted DAX code difficult to read, but it is almost impossible to
interpret. In addition, well-formatted DAX code is much easier to debug when
things don't work as expected.

Since it is a functional language, a DAX expression will consist of a call to a
DAX function, along with some parameters. These parameters can be static
arguments, or they can be calls to other DAX functions. All but the simplest
DAX expressions will consist of nested functions calls, often many layers
deep.

The following example shows a relatively simple DAX expression that
creates a measure to calculate the month-over-month percentage change in
sales amount:

SalesAmount MoM$% = DIVIDE (SUM('Sales'[SalesAmount]) -
CALCULATE (SUM('Sales' [SalesAmount]),DATEADD ('Calendar' [DateKey] . [Date], -1, MONTH)),
CALCULATE (SUM('Sales' [SalesAmount]),DATEADD ('Calendar' [DateKey] . [Date], -1, MONTH)))

Even with a simple measure like this, with no formatting, the DAX code is
difficult to read and understand.

The following example is the same measure, but this time it is formatted and
also makes uses of a variable to store the value of the previous month's sales
amount:

SalesAmount MoM% 2 =
VAR varPrevMonth =
CALCULATE (
SUM ('Sales'[SalesAmount]),
DATEADD (
'Calendar' [DateKey] . [Date],
-1,
MONTH

)
RETURN
DIVIDE (
SUM ('Sales'[SalesAmount]) - varPrevMonth,
varPrevMonth

)

Now, it is easier to understand what the measure is doing. This can be broken
down as follows:

1. First, it calculates the total sales amount for a previous month's date.

. It stores this value in the varprevmontn variable.

. Then, it takes a value of varprevmontn away from the total sales amount for
the current date.

4. Finally, it divides the value from the previous step by the value of

W N

varPrevMonth.

The following are a basic set of formatting rules that you should follow to
make your DAX code easier to read:

e Always place a new function call on a new line.

e Place the first bracket for a function call on the same line as the function.

e Ifa function only has one argument, then place that on the same line as
the function call.

e Ifa function has more than one argument, then place each argument on a
new line.

e Ifanargument is on a new line, indent four spaces from the function call.

e The closing bracket for a function call should be lined up with the
function call, and not indented.

o Keep commas separating arguments on the same line as the previous
argument.

e Ifyouhave to spread a function call over more than one line, ensure that
operators are the first characters.

e Use a space after brackets.

e Use a space after operators.

o Use a space after a comma, but not before it.

When referencing table names, calculated columns, and measures, follow
these guidelines:

e Do not use a space between the table name and the column name.

e Only use single quotes for table names when required (that is, when table
names have spaces).

e Ensure you always include the table name with column references. It
should be written as rabiename [columniame].

e Do not include a table name with a measure reference. It should be
Written as [MeasureName].

Although these simple rules may be difficult to follow at first, they will soon
become second nature, and they will make a tremendous difference to you
when working with your DAX code. As you will see in the next section, you
will more than save on the extra time it takes to format your code with the
time you save in debugging problems.

If you want some help formatting your DAX code, head on over to ww.daxformat
rer.com, Where you will find a very useful tool called DAX Formatter. This is
a free tool that will transform your raw DAX into clean, readable code.

Go to the website and paste in your unformatted DAX code, as shown in

Figure 2-7:

SEPARATORS Autarnatic SHORT LINE I: LIGHT ~ { HTMLONLY

= F%”xm SalesAmount Molfs = DIVIDE(SUN('Sales' [SalesAmount]) -
CALCULATE(SUM("Sales ' [SalesAmount), DATEADD(‘Calendar [DateKey]. [Date], -1,
MONTH)), CALCULATE(SUM('Sales ' [SalesAmount]), DATEADD('Calendar' [DateKey]. [Date],
-1, HONTH)))

44 806 REPORT FORMAT

Figure 2-7: Pasting unformatted DAX into DAX Formatter

http://www.daxformatter.com/

Here, I am using the month-over-month example we looked at earlier. Click
on the FORMAT button; the formatting tool will format your code using a
similar set of rules to the ones we looked at previously:

== DAX SalesAmount MoMk =
L R DIVIDE
SUM ("Sales'[SalesAmount]
- CALCULATE
SUM ("Sales’[SalesAmount]),
DATEADD
‘Calendar’ [DateKey].[Date],
2}
MONTH
2
CALCULATE
SuM ('Sales'[SalesAmount]),
DATEADD

‘Calendar’ [DateKey].[Date],

3
MONTH

Figure 2-8: DAX code formatted using DAX Formatter

The screenshot in Figure 2-8 shows the same code after it has been
reformatted by the DAX Formatter tool. As you can see, it is very similar to
the code we used in our earlier example. However, this time, the reformatted
code does not use a variable; however, it does apply many of the formatting
rules that were listed, and it is much easier to read and understand.

Debugging errors in your DAX code

Sometimes, you may end up writing a DAX expression that does not work as
expected. It may return an error that needs to be handled, or it may not return
the desired output.

Many other programming languages come with built-in tools that allow you to
debug code line by line. However, there are no built-in tools available with
DAX. It simply consists of functions that parameters can be passed to.

For simple DAX expressions, debugging should be fairly straightforward.
However, for code where you have multiple layers of nested expressions, it
may become necessary to break the expression down into smaller, more
manageable parts. By reducing the code into smaller segments, you will be
able to inspect different values and confirm which ones are returning the
expected results and which ones are not. This is where using variables
becomes invaluable when debugging code as it allows you to break your code
down and assign each segment to its own variable. Then, you can change the
expression for the rerurn keyword in order to return the values of different
variables.

Formatting the code in an appropriate manner is also important when it comes
to debugging code as it makes it much easier to read the code and follow what
it is should be doing. With unformatted DAX code, this is almost impossible
with all but the simplest of expressions.

Now, we are going to run through a practical example of how you can use
good formatting, along with a series of variables, to debug a poorly formatted
and non-working DAX measure.

The following code is for a measure, which should display a dynamic report
title based on the values that were selected in the slicer:

SelectedManufacturers = IF
(COUNTROWS (VALUES ('Product' [Manufacturer]))=0,"", "Manufactured by
"&IF (COUNTROWS (VALUES ('Product' [Manufacturer]))=COUNTROWS (ALL ('Product' [Manufacturer]

)),"all

manufacturers", IF (COUNTROWS (VALUES ('Product' [Manufacturer]))=1,"", CONCATENATEX (TOPN (C
OUNTROWS (VALUES ('Product' [Manufacturer])),VALUES ('Product' [Manufacturer]), 'Product’'[M
anufacturer],ASC), 'Product' [Manufacturer],",", 'Product' [Manufacturer],ASC) &" and

") &EXCEPT (VALUES (' Product' [Manufacturer]) , TOPN (COUNTROWS (VALUES ('Product' [Manufacture
r])),VALUES ('Product' [Manufacturer]), 'Product' [Manufacturer],ASC))))

However, the visual that's been set up to display the measure does not appear
to match what has been selected in the slicer, as shown in Figure 2-9:

Manufacturer

B A Datum Corporation
Adventure Works
Contoso, Ltd
Fabrikam, Inc.
Litware, Inc Manufactured by
Northwind Traders Marifart
Proseware, Inc. | |
Southridge Video
The Phone Company
Wide World Importers

Figure 2-9: Visual not matching value selected in slicer

As it 1s, the measure has no formatting, and it is almost impossible to work out
what it is doing. So, the first step is to apply some formatting, following the
rules we mentioned in the previous section.

The following is the same measure, but with formatting applied:

SelectedManufacturers =
IF (
COUNTROWS (VALUES ('Product'[Manufacturer])) = 0,

wn
14

"Manufactured by "

& IF (
COUNTROWS (VALUES ('Product' [Manufacturer]))
= COUNTROWS (ALL ('Product' [Manufacturer])),
"all manufacturers",
IF (
COUNTROWS (VALUES ('Product' [Manufacturer])) = 1,

nn
’

CONCATENATEX (

TOPN (
COUNTROWS (VALUES ('Product' [Manufacturer])),
VALUES ('Product' [Manufacturer]),
'Product' [Manufacturer], ASC

)I

'Product' [Manufacturer],

non

'Product' [Manufacturer], ASC

) & " and "

& EXCEPT (
VALUES ('Product' [Manufacturer]),
TOPN (
COUNTROWS (VALUES ('Product' [Manufacturer])),
VALUES ('Product' [Manufacturer]),
'Product' [Manufacturer], ASC

While this is a start and makes the code easier to read, it still doesn't help
isolate the cause of the problem. So, the next step is to convert the DAX code
so that it can use variables. Follow these steps to do so:

1. Looking at the code, the first candidate that will be converted into a
variable is the function call to get the list of selected manufacturers:

VAR SelectedManufacturers =
VALUES ('Product' [Manufacturer])

2. Next, we need to create another variable that will hold the value for the
number of selected manufacturers:

VAR NumberOfSelectedManufacturers =
COUNTROWS (SelectedManufacturers)

3. Then, we need to create a variable that will hold the value for the total
number of manufacturers that it is possible to select:

VAR NumberOfPossibleManufacturers =
COUNTROWS (ALL ('Product' [Manufacturer]))

4. Finally, we need to create two additional variables that use code from
the original DAX measure. The ﬁrSt, AllButLastSelectedManufacturer, should
get a list of all the values that were selected in the slicer, except the last

one. The last variable, rastseiecteamanuracturer, should get the value of the
last select item that was selected in the slicer:

VAR AllButLastSelectedManufacturer =
TOPN (
NumberOfSelectedManufacturers,
SelectedManufacturers,
'Product' [Manufacturer], ASC
)
VAR LastSelectedManufacturer =
EXCEPT (SelectedManufacturers, AllButLastSelectedManufacturer)

. The final step is to create the return expression, where we will replace
all of the existing expressions with the variables we created in steps [to
4. Once completed, the revised DAX code for the measure will be as
follows:

SelectedManufacturers =
VAR SelectedManufacturers =
VALUES ('Product' [Manufacturer])
VAR NumberOfSelectedManufacturers =
COUNTROWS (SelectedManufacturers)
VAR NumberOfPossibleManufacturers =

COUNTROWS (ALL ('Product' [Manufacturer]))
VAR AllButLastSelectedManufacturer =
TOPN (

NumberOfSelectedManufacturers,
SelectedManufacturers,
'Product’' [Manufacturer], ASC
)
VAR LastSelectedManufacturer =
EXCEPT (SelectedManufacturers, AllButLastSelectedManufacturer)
RETURN
IF (
NumberOfSelectedManufacturers = 0O,
"Manufactured by "
& IF (
NumberOfSelectedManufacturers =
NumberOfPossibleManufacturers,
"all manufacturers",
IF (
NumberOfSelectedManufacturers = 1,
CONCATENATEX (
AllButLastSelectedManufacturer,
'Product' [Manufacturer],

" "
4 I4

'Product’' [Manufacturer], ASC
) & " and "
) & LastSelectedManufacturer

While this doesn't fix the error, we are now in a much better place to start
debugging the code. We'll start by creating a copy of the measure, but with the
code after the rerury keyword removed. Then, we can start inspecting the
results of each variable by placing each variable after the rerurn keyword and
testing them one by one. Since this is a measure and the first variable returns a
table, it will need to be used with the counrrows function so that it returns a
single number instead. In this case, it should return the number of
manufacturers we selected in the slicer.

So, the code for testing the first variable should look like this:

SelectedManufacturersTest =
VAR SelectedManufacturers =
VALUES ('Product' [Manufacturer])
VAR NumberOfSelectedManufacurers =
COUNTROWS (SelectedManufacturers)
VAR NumberOfPossibleManufacturers =

COUNTROWS (ALL ('"Product' [Manufacturer]))
VAR AllButLastSelectedManufacturer =
TOPN (

NumberOfSelectedManufacurers,
SelectedManufacturers,
'Product' [Manufacturer], ASC
)
VAR LastSelectedManufacturer =
EXCEPT (SelectedManufacturers, AllButLastSelectedManufacturer)
RETURN
COUNTROWS (SelectedManufacturers)

With Power BI Desktop, I can use a card visual to see the value of the
variable that's being returned. For this variable, the result is as expected, as
shown in Figure 2-10:

Manufacturer

B A. Datum Corporation

B Adventure Works

B Contoso, Ltd

B Fabrikam, Inc.

B Litware, Inc. 7

B Northwind Traders

B Proseware, Inc.
Southridge Video
The Phone Company
Wide World Importers

Figure 2-10: Debugging code using the countrows function

Using this method, it is possible to go through all of the variables to see if
they return the values that we expected. In this case, when the
AllButLastSelectedManufacturer Variable is tested, it returns one more row than
expected. In fact, the variable declaration should be one less than the value
being returned by the wumberofselecteamanutacturers Variable.

So, the correct code should be as follows:

VAR AllButLastSelectedManufacturer =
TOPN (
NumberOfSelectedManufacturers - 1,
SelectedManufacturers,
'Product' [Manufacturer], ASC

)

With the code for the measure corrected, it now returns the correct dynamic

title based on the manufacturers selected in the slicer, as shown in Figure 2-
11:

Manufacturer

B A Datum Corporation

B Adventure Works

B Contoso, Ltd

B Fabrikam, Inc.
Litware, Inc.
Northwind Traders
Proseware, Inc.
Southridge Video
The Phone Company

Wide World Importers

Manufactured by A. Datum Corporation,
Adventure Works, Contoso, Ltd and
Fabrikam, Inc.

Figure 2-11: DAX code corrected to display dynamic title based on selected values of a slicer

Although this method of debugging is more complex compared to the other
programming languages, it still provides us with a practical way to inspect
and fix errors in our DAX code.

should focus more on the method that's being used to inspect the code and identify

9 In this example, rather than looking at how the code for the measure works, you

the cause of the problem.

Using variables allows you to break down your code into smaller parts and
understand how it is working, especially in relation to interactions with
filters, slicers, and other visuals.

Summary

In this chapter, you learned how to add variables to your DAX code using the
VAR and RETURN keywords, as well as how using variables will make
your code easier to read. You learned about nesting variables and about the
different levels of scope in which variables can exist and interact with each
other.

Then, you went through some practical examples of variables being used to
create measures, calculated fields, and calculated tables. You also looked at
the advantages of following set formatting rules when writing DAX

code. Finally, you went through a practical example of how to use both of
these features to help you debug your code.

In the next chapter, we will learn about the importance of data models and the
different types of schema. We'll look at DAX data modeling concepts, how

to load data into a data model, and how DAX can be used to extend a data
model.

Building Data Models

In this chapter, you will learn about the importance of building a well-
defined data model, both from the point of view of a BI professional and in
terms of making DAX code easier to write.

By the end of this chapter, you will have learned about the basics of good
data modeling and why it is important to have a well-structured data model.
You'll learn about importing data from different data sources and
transforming it into a structure that is easy for both you and your end users to
understand. Then, we'll look at a couple of different schema designs as well
as some data modeling concepts. There will also be some hands-on examples
of loading data, creating relationships, and using DAX functions to extend
your model through the addition of calculated columns, calculated tables, and
measures. Finally, you'll learn how to extend your data model further by
using DAX functions to create a custom data table.

This chapter has been broken down into the following sections:

e Introduction to data modeling
Data modeling concepts in DAX
Getting data into your data model
Extending your data model

It's a date

Introduction to data modeling

Before you start using a report or writing DAX expressions, you need to build
the underlying data model. You can think of a data model like the chassis of a
sports car. No matter how good the car looks, if it has a poorly designed
chassis, it will give a poor driving experience. In the same way, no matter
how good a report might look, ifit's built using a poorly designed data model,
then it won't be very easy to work with. Worse still, the report may contain
inaccurate information.

In addition to making it easier to work with DAX expressions, a well-
structured data model can also help to reduce the overall size of your Excel
spreadsheet or Power BI Desktop file. Through careful planning, a well-
designed data model can also improve performance.

The process of building a data model begins with importing data into tables
and creating the relationships between them. Then, you refine the data model
by removing or hiding columns that will not be used and by checking the
remaining columns to ensure they use the correct data types and formats. You
can refine the data model further by appending and merging tables to simplify
the structure. Finally, you can add hierarchies and extend the data model by
using DAX functions to create calculated columns and tables and measures.

A data model consists of the following elements:

e Data

Tables
Relationships
Hierarchies
Calculated columns
Measures

To start with, a data model defines how you connect to your source data. You
can import data from a large number of different data sources using many

different file formats. The following are some examples of the file types you
can connect to using Excel Power Pivot:

e Excel
Text/CSV
e XML
JSON

In addition, you can also connect to the following databases:

e SQL Server

Microsoft Access

SQL Server Analysis Services Database
e ODBC

« OLE DB

If you are using Power BI Desktop, you can choose from even more data
sources. The screenshot in Figure 3-1 shows the data connection screen in
Power BI Desktop and shows the vast array of connection options available.
Monthly updates to Power BI Desktop regularly increase this list with the
addition of new data source connectors:

Get Data

Search

All

_ |

File

Database
Power Bl
Azure

Online Services

Other

Certified Connectors

B

o E E

L]

[

Sy
o
A2
o

Excel

Text/CSV

AML

J5ON

Folder

POF

SharePoint folder

SQL Server database

Access database

SQL Server Analysis Services database
Oracle database

IBM Db2 database

IBM Informix database (Beta)
IBM Netezza

My30L database

PostgreSOL database

>

Figure 3-1: The data connection screen in Power BI Desktop

In addition, it is also possible to create custom connectors, meaning that you
can connect to almost any data source.

In a typical data model, you might load data from several different sources.
For example, you might load some of your data from a SQL Server database,
some of it from an Access database, and some of it from Excel spreadsheets
or flat files. You might even import data directly from a source system using
an API service.

When you import data into your model, you are loading a copy of it into memory.
There is also the option to use a method of connecting called DirectQuery, where the

ﬂ data remains in the data source and only the metadata is kept in the data model.
However, this method of connection comes with some limitations. These will not be
covered in this book as they are out of scope.

Once imported, the data is stored in tables, much like in a database. However,
before it is ready to use, you should do the following;

e Merge and append tables to simplify the data model.

e Create or amend relationships between the tables.

e Rename tables and columns to something more in line with business
requirements.

e Remove columns that will not be used.

e Hide columns that are required but should not be seen by end users.

e Ensure the columns have been defined with the correct data types.

e Decide on the appropriate formats for columns.

e Add hierarchies.

e Create calculated columns, calculated tables, and measures.

Building a well-designed data model is important as it underpins your entire
report. Getting it right from the start will make the process of building your
report much easier. Not only will it potentially make your report more
efficient, but it will also make your DAX code easier to write and understand.

Although your data model may look like other transactional databases, it
serves a very different purpose. With a transactional database, the goal is to
efficiently add, amend, and delete data. When designing a data model for

business analysis purposes, the goal is to allow for efficient querying and
aggregation of data.

The first step in building any data model for reporting purposes is to
understand the business requirements. You need to know requirements such as
where the data will be coming from, how the data will be filtered and sliced,
and how the data will be aggregated.

business is trying to achieve. To be successful, you need to understand what

ﬂ Before you start building a data model or report, consider what sort of analysis the
questions the business is trying to answer.

Users who are new to building a data model for reporting and analysis usually
make one or more of the following mistakes:

o Importing data into a single flattened table: This may be sourced from
a SQL query that joins several tables together. It's also not uncommon for
systems to export data as a single, de-normalized text file. The
temptation here is to import this file as it is and build your report on top
of the resulting single table data model.

o Importing a complete copy of a source database: This often results in
a large number of tables when using the default relationships that were
identified by the import process. Not only can these relationships be
incorrect, but the data in the related tables may be of different
granularity, resulting in inaccurate results in your reports. The data
model can also be difficult to work with due to its size.

e Not refining the data model: Once you have imported some data, you
should go through the process of refining your data model, as outlined
earlier.

Ideally, you should aim to keep your data model as simple as possible, with
just the right amount of data to be able to answer questions that are being
asked by the business for a specific purpose. Do not be tempted to try and
build a data model that supports all of the reporting needs of the business. You
will end up with a very large and unwieldy data model that will be difficult to
understand. It will use more memory than necessary and will perform less
efficiently. It will also make the job of writing DAX expressions more

difficult as you will struggle to understand how data flows around the
relationships between tables.

Data modeling concepts in DAX

Before you can design and build a well-structured data model, there are
some key concepts that you need to understand. In this section, we will look
at these concepts in detail. Then, in the next section, we'll put them into
practice when we build a simple data model as a hands-on example.

Fact tables and dimension tables

In its simplest form, a good data model's design will consist of a primary
table (or fact table) containing the numerical figures that you want to
aggregate and analyze. This is then joined to several lookup tables
(dimension tables) that contain the descriptive data relating to the business
entities that you want to use to slice and dice your data.

A fact table, as the name suggests, contains values relating to events or
processes such as sales. It contains numerical data, which can be aggregated
and analyzed to provide measurements, metrics, or other facts about the
business. It is the primary table in a schema and has foreign keys that relate it
to the dimension tables.

A dimension table is a lookup table that contains descriptive data relating to
business entities such as customer, product, or date. It may contain groups
and subgroups and allows you to slice and dice the information you have in
the fact table. The primary key of a dimension table relates to a foreign key in
the fact table.

Star schema and snowflake schema

With a simple data model, the fact table sits at the center and 1s surrounded by
the dimension tables. This sort of data model 1s known as a star schema due to

the fact that, when arranged, the tables form a star shape, as shown in Figure
3-2:

=] Stores
[T7 AddressLinzi
[AddreszLine2
[Closelate
[Clos=Rzzson
= DimChannel e [EmployecCount —— DimPromotion

3 Entitysey o e t
= s ot iscountPercen
Fll ChannelDescription [ETiLoadin =

Bl ChannelKey £ EnclDate
Fl Channellabal [ETLLoadD
A ChannelMame [LoadDate
M STiloadiD
[LoacDate
M UpdateDate

[mMaOuantity
e | IWliNCantity
[PrometionCategory

1 channeli=y

E1 Cumrsnoyiey

[l Darekay

[DiscountAmount
[DiscowntQuantity
[ETileagiD

T LeadDate

| DimDate =21 DimProduct

Al CalendarDayCOftesk BrandName

A CalendarDayOfiesid
M CalendarHalfvear [ClassMame
T CalendarHalfYearLabe! [ColerD

M Calendarionzh M ColorMame
M CalendarMonthlzbe A EMLloadD
[Tl CalendzrQuanzr

] AsizS=zzon AvzilableForSzleDate

ClassiD

Figure 3-2: Example of a star schema data model

You may also have dimension tables that are related to other dimension tables
in the form of a hierarchy chain. In this case, you end up with a snowflake
schema, as shown in Figure 3-3:

‘= Stores

[AddressLinel

[AddressLine2

I DimDate [CloseDate " DimPromotion

[CloseReason [DiscountPercent
[employeeCount [endDate
[Entitykey EJ ETLLeadID
[ETLLoadID [LoadDate
[MaxQuantity
1 MinQuantity
[PromoticnCategory

[AsiaSeason

1 CalendarDayOfWeek

1 CalendarDayOfweeklabel
1 CalendarHalfvear

1 CalendarHalfvearLabel

+ FactSales

=1 channelKey

=1 CurrencyKey

71 DateKey

1 DiscountAmount
&1 DiscountQuantity
&1 ETLLoadID

71 LozdDate

—— . - DimProductCategory
| DimChani

[ETLLoadID
1l ChannelDescription &7 DimProductSubcategory, | i [LoadDate
M1 ChannelKey [E ProductCategoryDescription
£ ChannelLabel £ ETLLozdiD [ProductCategoryKey
&1 ChannelName &1 LozdDate

2] DimProduct [ProductCategoryLabel
1 ProductCat K
Il ETLLoadID roductCategorykey [ProductCategoryName

1 LoadDate [AvailableForSaleDate M productSubcategoryDescription 73 UpdateDate
T srandName £ productSubcategoryKey
£ ClassiD 1 ProductSubcategoryLabel

{1 ClassName [ProductSubcategoryName
1 Colorip 1 UpdateDate

1 ColorName

i ETLLoadID

Figure 3-3: Example of a snowflake schema data model

Where possible, you should look to flatten these chains of dimension tables by
merging them together to form a single dimension table. Once you've done
this, you can create a hierarchy that allows you to step down through the
levels of groups and subgroups in your reports.

You may also have tables in your data model that have a one-to-one
relationship. In these cases, you should also consider flattening the data model
by merging the tables into one. Not only will this reduce the overall size of
your model in memory, but it may also improve performance.

Relationships

Once you have imported some data, the next step is creating the relationships
between the tables. If you have imported data from a database where primary
and foreign keys have already been defined, then these should be imported
along with the tables. However, you may find that these relationships are not
suitable for your data model. You may also have more than one relationship
between tables, where only one will be active. In addition, you may also want
to create new relationships.

A relationship is defined by a single column from each table. You cannot use
multiple columns to define a relationship, but you can create new columns in
each table that consist of multiple columns concatenated together. You can
then use these to create the relationships:

= Cumency

7 Cumengy
7 Cumency Cate
7 Cumencyley I ProductCategory

7 Prof —
= Sfore i " Product Subcateqory - o Catgory

] Categary Code
ji' 1 1 PraductCategonyey
.

1 Addres Line 1 (] ProciuctCategonyey
11 Addres Line 2 7 Productiuigoney
A Gy ‘] Subeategary

P Close Dite . 1 Subcategory Code

1 Close Fezaon

S
8 Curencykey
0 Customeniey
{7 Delery Dae A Aaileble D
I DelenDateliy

B (100
1 DueDatefiy
£ et Price A Menufactrr
I OnlineSzleskey

* Product

C Dite

1 Calerar Yer Quarier Number
1 Dete
] Detefey I AddrezsLine 1
Dyt 1 s e
i - P 7 Bith e
7] Day of Wik Mumber] Bith 2
] Discount {1 Cars Ouned
1 End Dt {2 Chldren At Home
] Pramation

= Customer

&1 Pramagon Cazegary
2] Promaon Code

Figure 3-4: Creating relationships between tables in a data model

The screenshot in Figure 3-4 is from a data model in Power BI Desktop. Both
Excel Power Pivot and SSAS Tabular provide similar views of their data
models. In this case, most of the relationships have already been defined.
However, the relationship between the Sales table and the Customer table
still needs to be created. To do this, you can drag the cursor from the

CustomerKey field in the Sale table to the CustomerKey field in the Customer
table.

Alternatively, you can create or maintain relationships through the Manage
Relationships dialog, which can be found under the Modeling tab, as shown in
Figure 3-5:

Ml | | S & = | Contoso - Power Bl Desktop

Home Maodeling Help
= @ Language -
& T g
= Q

Linguistic Schema -

Manage Manage View as
Relationships Roles Roles
Relationships Security Q&

=1 Profit

i Store

1 Address Line 1
A Address Line 2
M City

fl Cloze Date

Figure 3-5: The M anage Relationships button in Power BI Desktop

To create a new relationship using this method, you need to do the following:

1. On the Modeling tab, click Manage Relationships to open the Manage
Relationships dialog, then click on New.
2. In the Create Relationship dialog, in the first table drop-down list, select
the Sales table and then select the CustomerKey column.
3. In the second table drop-down list, select the Customer table and select
the CustomerKey column.
. From the drop-down list for Cardinality, select Many to one (*:1).
. From the drop-down list for Cross filter direction, select Single.
. Ensure the checkbox for Make this relationship active is ticked.
. Your dialog box should look like the one shown in Figure 3-6. If it does,
click on OK.

~ O\ D K~

8. Click Close on the Manage Relationships dialog:

Create relationship

Select tables and columns that are related.

Sales -

omotionkey CurrencyKey CustomerKey OrderDatekey DueDateKey DeliveryDateKey Order Date

1 1 2329 20070402 20070412 20070409 02/04/2007
1 1 2330 20070402 20070414 20070411 02/04/2007
1 1 2331 20070402 20070408 20070413 02/04/2007
L 4 >
Customer -
Customerkey GeographyKey Customer Code Title Mame Birth Date Marital Status =~ G
25 470 11024 null | Xie, Russell 17 September 1978 M M
37 516 11036 null | Russell, Jennifer 18 December 1978 M F
42 633 11041 null Carter, Amanda 16 October 1977 M F
L4 >
Cardinality Cross filter direction
Many to cne (1) ™ Single v
¥ Make this relationship active Apply security filter in both directions

. . . .
ASSUME rererential INtegrty

Ok Cancel

Figure 3-6: The Create Relationship dialog in Power BI Desktop

This should create an active relationship between the Sales and Customer
tables. The cardinality of the relationship will be one-to-many between the
Customer and Sales tables. This means that a single record in the Customer
table may have many related records in the Sales table.

On the one side of a one-to-many relationship, the table must have a distinct set of
primary key values, otherwise, you will get an error. However, on the one side of a
one-to-many relationship, the table does not need to have matching primary key
values for all of the foreign key values in the table on the many side of the
relationship. A data model does not enforce referential integrity in the way you might
expect if you have experience of working with database models.

If you create a slicer that's connected to a dimension or lookup table and it
contains a (Blank) record at the top, there must be records in the related fact
or data table that have no corresponding record in the lookup table:

Prochuctame Salls Amount by Fiscel Year

B Gl i
L . Datum Advanczd Digitel Camera M30D Azure
| & Datum Advanced Digitel Camera 300 Black

| & Datum Advanczd Digiel Camara 300 Green S0
[& Datum Advanczd Digitel Camera M300 Grey

| & Datum Advanczd Digiel Camara M300 Qrenge

| & Datum Advanczd Digitel Camera 300 Fink -
| & Datum Advanczd Digiel Camara M300 Siver ’

L A Datum Allin One Digital Camerz M200 Azure

| & Datum Allin One Digital Camera M200 Black

| & Datum Allin Qn Digital Camera M200 Green S0
L| & Datum Allin One Digital Camera M200 Grey

| & Datum Allin One Digital Camera M200 Orznge

| & Datum Allin One Digital Camera M200 Pink l
| A& Datum Allin Qne Digital Camera M200 Sikver

| & Datum Bridge Digital Camera 300 Azure

| & Datum Bridge Digital Camera 300 Black

(] &, Datum Bridge Digital Camera M300 Green i
| & Datum Bridge Digital Camera 300 Grey

(1 A Detum Bridge Digital Camera V300 Orange

| Datum Bridge Digital Camera h300 Pink M
(1 A Datum Bridge Digital Camera M300 Siver

| Datum Compzct igial Camarz M200 Azure

(] A Detum Compact Digiel Camera 200 Black -
| & Datum Compzct Digitel Camara hl200 Grezn ’

(1 A Detum Compct igitl Camere 200 Grey

| A& Datum Compzct igiel Camarz 200 Qrange

[& Datum Compzct Digtel Camara h200 Fink 1)
| & Datum Compzct Digitel Camera hi200 Siler

| & Datum Consumer Digital Camera £100 Azure

| A Datum Consumr Digital Camerz E100 Blck "

[A Datum Consumer Digital Camerz E100 Grezn FY 2008 Y 206 B 2 07

Figure 3-7: Slicer with a blank value showing

The screenshot in Figure 3-7 shows an example of this. Here, we have a
product slicer that is referencing the Product table and has (Blank) at the top.

This means that there are records in the related Sales table that are for
products that do not exist in the Product table.

One solution to this is to simply filter out blank records from the slicer.
However, as shown in the preceding example, this would also remove a
significant amount of data from the Sales table, meaning that data would also
be removed from your reports. Where you encounter this situation, you should
review your data model and, if necessary, the source data behind it.

Cardinality

Relationships in your data model can have the following cardinality:

e One-to-many (*:1): The column of the table on the one side of the
relationship, which is usually the lookup or dimension table, only has
one instance of a value. This is usually the primary key for that table.
The other related table, which is often a fact table, can have many
instances of the value. This is known as the foreign key.

e One-to-One (1:1): The column of the table on one side of the
relationship has only one instance of a value, while the column of the
table on the other side of the relationship also only has one instance of
the value.

e Many-to-many (*:*): You can have many-to-many relationships
between tables, removing the need for unique values in tables. It also
removes the need to create bridging tables for the purposes of
establishing relationships. However, there may still be circumstances
where creating bridging tables 1s the preferred solution.

Cross filter direction

When you create a relationship between two tables in SSAS Tabular and
Power BI Desktop, you have the choice of bidirectional cross filters or
single direction cross filters. With Excel Power Pivot, to maintain backward
compatibility with earlier versions of Excel, you can only have relationships
with single direction cross filters. The arrow on a relationship line, which 1s
shown in the data model view, shows the direction in which the filter flows.
Let's take a look at the directions that are stated:

e Single direction: If you filter records in the table on the one side of a
relationship, the filtering choices are carried through to the table on the
many side of the relationship. However, if you filter records in the table
on the many side of the relationship, these are not carried through to the
table on the one side of the relationship. In Excel Power Pivot, all
relationships will have a single direction.

e Both: Unlike single direction cross filters, these filters flow in both
directions. So, if you filter records in the table on either side of the
relationship, they will be carried across to the table on the other side of
the relationship. For filtering purposes, both tables in the relationship
are treated like they are a single table. However, with bidirectional
cross filters, it is possible to create an ambiguous set of relationships,
especially when you have a complex pattern of tables. Because of this,
you should avoid using bidirectional filters where possible.

Hierarchies

A hierarchy is a set of nested columns that are grouped together in a way that
allows you to drill up and down a report visual using a single object from the
field list. A typical example of a hierarchy is usually found in a date table,
where a date hierarchy might consist of the year, month, week, and day fields.
This could then be used with a report visual, where it would allow you to
aggregate data by these values, giving you the ability to drill up and down by
them.

In the following example, we're taking a data model where there are separate
tables for products, product subcategories, and product categories. As it is,
these can be used as they are to create a visual that allows you to drill up and
down on a matrix to show data that's been aggregated by different levels.
However, you need to use three objects from the field list to accomplish this.
The screenshot in Figure 3-8 shows an example of this:

- Contaso - Power Bl Desktop

I Home View Modeing Help Fomat DatalDiil

e GREBLEEDS™ gal £ §

NewCalumn
Faste F— Get Recent Enfer Edt Refrsh New MNew AskA Buttons CESha . me Fom Swtch Manage Publish
Dafa* Sources™ Dafa CQueres Page Viowal Cusstion + PE” Matetpace Fle Themer Reationshps | Mew QuickMeasure
(lipboard Eiternal data Ingert Customvisuale — Themes Relationships Calculations hare
il - oualizat '
r@ - Mj“n Visualzafions > Fields
7 (ategoy Saes Amount " E M t “.l E m 0 et
Auio 431553 689307 M g h I &
Bluetaoth Headphanes $14 8383763088 " A
ﬂg T Bluetooth Acfve Headpnones E202 Black NG H l‘—' , (' @ 9 Product Dsc
NT Bt Aci eaphores E102 e (T3 3 :;1 T B[
T Bluetootn Actve Headphanes E200 Sher f1E3418267 ; y DR Y ¢ Product Nam
NT oo Acve Heaiphones E02 Wi il . e
AT Buetoot teeo Heaconares 52 Bk EEAETE E L
T8 ot S s 0 QST s
N7 Bt S ors 50 g £ ? @ Sk e
NT Bluetooth Serea Headhones £52 Yellow {13205 b ok e
| N'Wreless3LetucthStereuHeeduhcreswEack Qs |
T Wirelss Butooth Sterep Headphones E102 8 {244 99065 (e m Sty
BT Wil Bluetooth Streo Hesaphones 102 Sher S84 T Unit Cost
T el ol S edpones 1 Wt A Mtgry VX -
e oo S s 00 505 o vy ot
AT Wireless Btoath Streo Headhones 2302 ik {20830704 Z Weight
NT Wirelss Buetooth Sterep Headphones £302 Shver R " gt
T Wireless Butaoth Sterea Headphones £302 White AR
AT Wireless Bluetoth Streo Headahanes £307 Yelow {4ed0nt A data ildshere f\@; Product Categor
NT Wirelss Buetaoth St Headphones MAD2 Black 30335530
AT Ul Buetooth Steen Hezcphones WADE Green fe37064 Valugs ¢ Categoy
NT Wirelss Bugtooth Steren Headphones MAO2 Purple TR Catgor Cof
T Wi oo o Hetohones V2 e A ’ Seshmont VX
Totd 5 553 680307 A Product ubeate
L = Jd ¢
Fiters ¢ Subeategory

Figure 3-8: A visual using multiple fields to create a drill-down

In the Date table, a hierarchy has been created that includes the Year, Quarter,
Month, and Day fields. Now, we only need to use one object from the field

list to be able to drill up and down the matrix. This can be seen in the
screenshot in Figure 3-9:

iiHs s - Contoso - Power Bl Desktop

GO Home View Modeing Relp Fomat Dafa/Dil

b GRESRENNEE- gaf 2= §

NewCo\umn
Paste ¢ Get Recent Enter Edf Reftesh New New AskA Buttons me Fom Swich Manage . Pubiih
FomatPanter Daty Sourcesv Data Queris™ Page~ Visual Question CESW 87 Wakelplace Fle Themer Relationships | g New Quick Measure
(lipboard Eiternal data Ingert Customvisuals ~ Themes Relationships (alcultions Share
I - Visualizations) Filds
r@ = 0F ol
@ it Sals mount i E M t “.l E m pSearch
W SR I & “ W
Ol S4deTe 1024597 " n| ¥
% WEd0me
Jameary | $111 45751834 Jeia Seeon
1| b EBTADE it
1| B = D Ry A
] 489873011 , 1 (lendar Vear
AR i
;1 :;‘;S;ifw;; ' T Calendar ear
e BTN ? @ L Clncar fear
1 g1 35 R (alendar Vezr
| b b |
y R - o I Calendr Yaar
i 33903 A [
1 i&ﬂ O36,6805 i ! ‘r ﬁ .
A 8% Dt Hierr
N R b : ‘
B RS Nt X\ WBVa
] U Dy X' R e
B NS
| T ol o Mort
| B iB)y
1 Hﬁ*mlzaﬂ Al it felds here <
B | G o
0| SR ; ok T Dot
Tatdl 34,678, 102.4397
L ! ; - d Sales Amount v Furape a0
Fiscal Month

Figure 3-9: A visual using a date hierarchy to create a drill-down

In the next section, we'll go through a hands-on example where we'll merge
the Product Category, Product Subcategory, and Product tables into one table
and create a new hierarchy.

Getting data into your data model

Now, let's walk through a hands-on example of building a simple data model.
We'll start by importing data from an Access database. Once the data has
been imported, we'll refine the model by renaming the tables and columns,
hiding unused data, and ensuring that we have created the appropriate
relationships.

Building your first data model

In this example, we'll use Power BI Desktop to walk through the process of
importing data and building a simple data model. In the next chapter, we'll
look at how to import data using Excel Power Pivot and SSAS Tabular.

If you want to follow along with the examples in the rvest of this book, you can
8 download copies of the Access databases and Excel files that are used from: netps://g:

thub.com/dataworldtv/Hands-On-Business-Intelligence-with-DAX.

You will also find a Power BI Desktop file there that has the tables already imported,
to help get you started.

We'll start by importing data from an Access database. From the Power BI
Desktop screen, click on Get Data. From the Get Data dialog, select Access
database and click on Connect.

This will open the Open file dialog, as shown in Figure 3-10, and this is
where we can select the Access database to open:

https://github.com/dataworldtv/Hands-On-Business-Intelligence-with-DAX

4 « DAXBook » Samples » ContosoV2 v () | Search ContosoV?2 p

Organize ¥ Newfolder = [9

A Name Status Date modified Type

3 Quick access

B Desktop
* Downloads

ﬂ Documents

@ ContosoSales.accdb 0 03/06/20101833 Miar
@ ProductCategories.accdb] 03/06/20101833 Miar

&= Pictures
DAX Book
Hands-0n Busin
Presentations

Samples
@ Onelrive

[This PC e .

File name: | ContosoSales.accdb v| Access Databases (. mdb*md +

Open |v Cancel

Figure 3-10: The Open file dialog for getting data

We'll start with the ContosoSales database. Click on Open, which will open
the Navigator dialog. This i1s where we can select which tables we want to

import. For now, we'll select the DimDate, DimProduct, DimSubcategory, and
FactSales tables, as shown in Figure 3-11:

Navigator
P FactSales E
Display Options * [E Saleskey DateKey channelkey StoreKey ProductKey
4l ContosoSales ccdb] 7077 13/04/2008 00:00:00 1 297 108
21 inChamel 7078 14/06/2009 00:00:00 1 203 %
7079 01/11/200900:00:00 3 200 2
¥ B DimDate
7080 11/12/200800:00:00 1 182 113
B DimEntiy 7081 16/04/2007 00:00:00 1 %65 69
v [DimProduct 7080 08/06/2007 00:00:00 1 185 2
¥ [} DimProductSubcateqory 7084 08/05/2007 00:00:00 z 306 28
B Dinfromoton 7085 22/09/2009 00-00:00 2 307 3
T 7087 13/08/2009 00:00:00 3 200 50
7088 25/09/2008 00:00:00 4 308 3
7089 29/12/2008 00:00:00 3 200 10
7091 18/01/200900:00:00 1 27 114
709 27/06/200700:00:00 1 1 1
708 21/09/2007 00:00:00 1 57 154
7095 15/08/2008 00:00:00 2 199 I
709 04/10/200900:00:00 3 200 31
7097 28/07/200900:00:00 3 200 %
7098 15/02/2007 00:00:00 1 3 %
7099 07/03/2008 00:00:00 1 21 116
7100 21/10/200700:00:00 1 11 151
7101 05/05/200900:00:00 2 199 118

0 The data in the preview has been truncated due to size limits,

()

Select Related Tables Load Edit Cancel

Figure 3-11: Selecting tables to import from the Navigator dialog

At this point, instead of clicking Load, click Edit, which will take us into the
Power Query Editor. From here, we can choose which fields we want to
load from each table. We can also rename the tables and fields to something
more business-friendly.

On the left-hand side of the screen, we have a list of tables we're going to
import. In the middle section of the screen, we can see the data from the
highlighted table. Finally, on the right-hand side, we have some field
properties. You will also see a list of steps that have been taken to transform
the table, such as renaming columns. We'll follow this as we make changes,
but for now, it should only have two steps for Source and Navigation.

For the next step, we will create a new group so that we can store our Access
tables, and we will rename the table to something more appropriate for
business end users. Remember, when you produce reports, your field names
will be used for labeling, so it's important to have names that make sense to
the business.

When renaming tables and fields, you should follow these simple rules:

Avoid using all capital letters, for example, SALESAMOUNT.

Do not use Pascal casing, for example, SalesAmount.

Do not use Camel casing, for example, salesAmount.

Separate words with a space, for example, Sales Amount.

Remove any prefixes or suffixes, for example, FactSales Amount.
Avoid using abbreviated names or acronyms, for example, Sales Amt.

To create a group for our tables, we'll right-click in the blank area under the
tables and select New Group from the context menu. We'll name this new
group Access Tables and, once created, move the tables into this group by
right-clicking on each table and selecting Move To Group from the context
menu. Once the tables have been renamed and moved to the new group, the
list of tables should look like the screenshot in Figure 3-12:

s | | H = | Untitled - Power Query Editor

Hame Transform Add Co
s s b BE L
-HT'\ |':-_t_|

Close & M ewr Recent Enter Crata

Apply~= Source = Sources = Data sett
Close Mew Query Data
Queries [4] £

4 Access Tables [4]
] Date
E Product
EX Product Subcategory
[Sales
Other Queries

Figure 3-12: Tables imported and sorted into group

The next step is to go through each of the tables, remove any fields that are not
needed, and rename those that are required. As you do this, you will notice
that the new steps are added to the list of steps shown in the panel on the
right-hand side, as shown in Figure 3-13:

Query Sattings et

4 PROPERTIES
Mame

Ciate

All Properties

4 APPLIED STEPS

Source
MNavigation
Removed Columns

< Renamed Columns

Figure 3-13: Steps added to data import

If we were to go ahead and import the data at this stage, we would end up
with the data model shown in Figure 3-14:

A Date

2 CalendarDayOfeek
7 CalendarMonth
Pl Calendarluerter
1 Calendarieek
7 Calendartear

7 Datekey

P2 Day of Week

E Month

A Quarter

71 Week

A Yer

4 Sales

A Datekey

1 Discount Amount
3 Discount Quantity
E Productkey

7 Retum Amount
3 Retum Quantity
7 Sales Amourt

2 Saes Quantiy
7 Salsley

A Totel Cost

3 UnitCost

& Unit Pice

1 Product

3 Avaable ForSel Dt
A Brand

A Class

A Cokr

1 Manufacturer

A Product Description
A Product Name

1 Productfey

F1 ProductSubcateqoryey

A Status

A Stock Type

2 Stop Sle Date
A e

-~ Product Subcategory -

1 HloadD
A loadDite
2 ProducCategonyley

1 7 ProductSubeategoryDesc.

7 ProductSubcategoryey
A ProcuctSubeateqonLabe
2 ProductSubcategoryName
A UpdateDate

Figure 3-14: Data model after loading imported data from Access

At this stage, we have a snowflake schema since the product and product
categories have been split over two tables. From both a storage and a
performance point of view, it would be better if we could merge these two
tables into one. To do this, we need to go back to the Power Query editor:

1. In the Power Query editor, select the Product table and click on Merge
Queries, which can be found in the Combine section of the Home ribbon.

2. In the Merge dialog, highlight the ProductSubcategoryKey column for the
Product table. Then, in the lower half of the dialog, select the Product
Subcategory table from the drop-down box.

3. Next, select the ProductSubcategory column for the Product Subcategory
table.

The screenshot in Figure 3-15 shows what the Merge dialog should
look like at this stage:

Merge

Select a table and matching columns to create a merged fable.

Product [3
escription ProductSubcategoryKey Manufacturer Brand Class Style Color
P3 and WA 1| Contoso, Ltd Contoso | Economy | Product0101001 | Silver
P3 and WMA 1 Contoso, Ltd Contoso | Economy | Product0101002 | Blue
B driver plays MP3 and WIMA 1 Contoso, Ltd Contoso | Economy | Product0101003 | White
splay, plays MP3 and WA 1 Contoso, Ltd Contoso | Economy | Product0101004 | Silver
splay, plays MP3 and WMA 1 Contoso, Ltd Contoso | Economy | Product0101005 | Red

L4 >
Product Subcategory - [%

ProductSubcategorykey ProductSubcategorylabel ProductSubcategoryiame ProductSubcategoryDescription

1 0101 MP4EMP3 MP4EMP3
20102 Recorder Recorder
3 0103 Radio Radio
4 0104 Recording Pen Recording Pen
5 0105 Headphones Headphones
< >
Join Kind
Left Quter (all from first, matching from second) J

Use fuzzy matching to perform the merge

I» Fuzzy merge options

/' The selection matches 1690 of 1690 rows from the first table. ok Cancel

Figure 3-15: M erging data using the M erge dialog

4. Finally, check that the Join Kind is set to Left Outer and click OK.

Now, you will have a new column in the Product table called Product
Subcategory. At this point, it will be a table type, which is indicated
by the fact that each field contains a table for a value.

5. Click on the double arrow icon next to the field name.

6. A list of fields from the Product Subcategory table will be displayed.
Click the Select All Columns checkbox to deselect the columns and
select the ProductSubcategoryName field. Make sure the Use original
column name as prefix checkbox is not ticked.

The screenshot in Figure 3-16 shows what the merge should look like:

Key"}, #"Product Subcategory”, W

F FactSales ™ Product Subcategory
]

yearch Columns to Expand %l

e
*) Expand Aggregate

B (Select All Columns)
ProductSubcategoryKey
ProductSubcategorylabel

¥ ProductSubcategoryMName
ProductSubcategoryDescription
ProductCategoryKey
ETLLoadID
LoadDate
UpdateDate
DimProduct

Use onginal column name as prefix

K Cancel

[=1]
=
1]
(=1]

e

Figure 3-16: Selecting fields to include in the merge

7. Click on OK. This will complete the table merge, adding the Product
Subcategory field to the Product table.

8. We no longer need to load the data from the Product Subcategory table,
so right-click on the Product Subcategory table and uncheck Enable load
from the context menu. You will get a warning about data loss, but you
can click continue to ignore it.

9. Now, click Close and apply to 1oad the data into the data model.

Now, if we look at the data model, we will see that the Product Subcategory

table is no longer included in the model. Product Subcategory has been added
to the Product table as a new column instead.

Now that we have Product Subcategory and Product in the same table, we
can create a hierarchy by performing the following steps:

1. Right-click on the Product table and select Create hierarchy from the
Context menu.
2. In the Properties pane, give the hierarchy a name, and in the advanced

section, add Product Subcategory Name and Product Name, as shown in
Figure 3-17:

Properties >

“* General

Mame

Products

Description

Display folder

ar the dienlayv tolde

LET LI JspNa LI L e

Is hidden

off O—

 Advanced

Hierarchy

Select a column to add level. .. v

«* Product Subcategory Name (Produ... X

«»* Product Name (Product Name) =

Apply Level Changes

Figure 3-17: Creating a hierarchy

3. Click on Apply Level Changes to create the new hierarchy.

The next step in building our data model is to hide the columns that are needed
by the model but should not be shown to the end user. These will include the
various key fields that are required for creating and maintaining relationships
but are not needed for reporting purposes.

You should also hide the Product Name and Product Subcategory Name fields
in the Product table to ensure that end users use the new Products hierarchy
and not these fields when creating reports.

To hide a field, right-click on a field name and select Hide from report view
from the context menu. Hidden fields are grayed out on the data model view.

Finally, we need to link the Date table by creating a new relationship. First,
drag the DateKey field from the Date table to the DateKey field of the Sales
table. This should automatically create a one-to-many relationship between
the two tables.

We could also use this method to connect the Date table to the Product table,
but, as shown in Figure 3-18, these relationships are inactive when they're
created:

| Date

Fll CalendarDayOfWeek
Hl CalendarManth
Hl CalendarQuarter
El CalendarWeek
El CalendarYear

El Datekey

E Day of Week

El Month

El Quarter

Bl Week

Bl Year

FH Sales

Hl DateKey

F Discount Amount
Hll Discount Quantity
Bl ProductKey

F Return Amount
E Return Quantity
Hll Sales Amount

Fl Sales Quantity
Al SalesKey

Hll Total Cost

Ell Unit Cost

£l Unit Price

7 Product

Fl Available For Sale Date
1 Brand

Fl Class

Hl Color

A Manufacturer

F Product Description

Hl Product Name

Bl Product Subcategory Na...
Bl ProductKey

Hll ProductSubcategoryKey
Hll Status

H Stock Type

A Stop Sale Date

Figure 3-18: Inactive relationships between tables

While this is fine, and later in the book we will look how we can use DAX to
work around this, for now we'll make a couple of copies of the Date table and
use these to join the two dates we have in the Product table.

To do this, switch to the report view. From the Modeling ribbon, select New
Table from the Calculations section. Type the following into the DAX editor:

|Available Date = 'Date'

Repeat this process to create a second copy of the Date table, but this time,
type in the following DAX expression:

|Stop Date = 'Date’

Return to the model view. Here, you will see you have two new date tables.
Create the relationship between the Available Date table and the Product
table by dragging the DateKey field from the Available Date table to the
Available For Sale Date on the Product table.

Repeat this process for the Stop Date table by dragging the DateKey field
from the Stop Date table to the Stop Sale Date on the Product table.

You should now have a simple but well-structured data model like the one

shown in Figure 3-19:

1 Date

A CalendarDayOfWeek
A CalendarMonth
A CalendarQuarter
A CalendarWeek
A CalendarYear

P Datekey

71 Day of Week

A Month

£ Quarter

A Week

B Vear

i Sales

7 Datekey

£ Discount Amount
A Discount Quantity
P Productiey

£ Return Amount
1 Retum Quantity
£ Sales Amount

P Sales Quantity
F SalesKey

A Total Cost

B Unit Cost

£ Unit Price

= Available Date

71 CalendarDayQfeek
A CalendarMonth

A CalendarQuarter

A CalendarWeek

A Calendarfear

7 Datekey

" Product

A Class
A Color
A Manufacturer
F1 Product Description
A Product Name
Bl Product Subcategory Na..
H ProductKey
E ProductSubcategorykey
A Status 7 CalendarDayOf\Week
A Stock Type F1 CalendarMonth
A1 Stop Sale Date U 7 CalendarQuarter
i Style 71 CalendarlVeek
7 CalendarVear
71 Datekey

~ Stop Date

Figure 3-19: Example of a simple data model using multiple date tables

One final step that we can take to make the data model even better is to go
through the tables and ensure that the fields have the correct data type and
formatting. To do this, go to the model view. In the Properties pane, you will
be able to see the various properties for each field. These include the
following:

o Data type

o Format

e Percentage format

e Thousands separator
e Decimal places

e Currency format

e Sort by column

e Data category

e Summarize by

e Isnullable

In this hands-on example, we only built a small data model, but in doing so,
we have covered several important data modeling concepts and looked at
some best practices. When building a data model, it is important to consider
the end user. Name tables and columns appropriately using language that the
business understands.

Removing unnecessary columns from your data load and reducing the number
of tables by merging and appending tables not only makes the data model
more usable by the end user, but it also helps to reduce its size. Finally,
making sure that you have defined your relationships correctly is important
when it comes to building reports and ensuring that you get correct results.
These are essential if your DAX expressions and the evaluation contexts are
to work the way you expect.

Having a good data model makes using DAX easier since it makes it easier to
understand how data and filters flow between tables when they are applied.
This, in turn, helps you to understand the effect that the evaluation context has
on data in your model and how this affects the execution of your DAX
expressions.

Extending your data model

The true power of DAX for the BI professional is that it allows you to gain
deeper insights into your data by giving you the ability to expand your data
model. It allows you to create new data and extract new information from the
data that already exists within your data model.

In this section, we're going to look at three different ways in which you can
use DAX to extend your data model. By the end, we'll have added some
examples of each of the following objects to our data model:

e Calculated columns
e (Calculated tables
e Measures

Calculated columns are a very quick and easy way to add data to your model,
but they have the disadvantage that they will increase its size and use more
memory. Calculated tables will also add to the size of your data model, but
they are a great way of adding lookup tables that may be missing from the
model's source data. As we will see in the next section, they also offer an
effective way to add custom date tables to your data model.

Measures are a particularly powerful way to gain insights. These range from
a simple sum of a column, through to very complex measures that use values
from across different tables. They are also a great way to expand your data
model without increasing its size, and in many cases, they can be used
instead of calculated columns.

Adding a calculated column

In chapter 1, What is DAX?, we covered the process of creating a simple
calculated column. So, for this example, we'll create something a little more
complex.

From the Power BI desktop, do the following:

1. Switch to the Data view.
2. In the Fields pane, select the Product table. This will display the contents
of the Product table in the view pane.

3. From the Calculations section of the Home ribbon, select Create New
Column. This will bring up the DAX editor, as shown in Figure 3-20.
Here, you can name the column and add the DAX expression that defines

1t:

wl | H = | Chapter 3 - Building Data Models - Power Bl Desktop

sy ¥ Cut
R Copy

Paste

Modeling

Help

6 [E B [3

Get

Format Painter pata -~

Clipboard

~| Color
E Black
Black
ﬁg Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black

1 Column =

~ || Stock Type |~ | Unit Cost |~ | Unit Price |~ | Awvailable For Sale Date |~ | Stop Sale Date |~

High
High
High
High
High
High
High
Hign
Hign
High
High
High
High
High
High

Recent Enter

Edit Refresh

Sources = Data Queries ~

External data

£152.44
£167.73
£254.54
£208.52
£197.28
£224.87
£167.73
£155.89
£153.49
£101 45
£243 27
£244.72
£153.54
£6.6
£20.34

£299
£329
£589
£409
£429
£489
£329
£339
£399
£199
£529
£480
£360
£12.95
£39.9

Mew New

Ask A Buttons

Page - Visual Question

05/01/2005 00:00:00
05/01/2005 00:00:00
05/04/2005 00:00:00
02/01/2006 00:00:00
05/04/2005 00:00:00
01/12/2007 00:00:00
23/08/2006 00:00:00
15/11/2007 00:00:00
11/02/2005 00:00:00
01,/01,/2004 00:00-00
15/03/2008 00:00-00
15/03/2007 D0:00:00
01/07/2008 00:00:00
16/04/2005 00:00:00
05/02/2006 00:00:00

Insert

Text box
Image

From From
Shapes Marketplace File

Custom visuals

Status |~

Figure 3-20: Creating a new calculated column

F Eﬁ L@NewMeasure

w |J New Column
Switch Manage X

Theme = Relationships L 'gl New Quick M

Themes Relationships Calculation

Fields

~ | Column 'l

A | O sgearc

~ B Aval
~ B Dat
~ B Pro
Availa
Erand
Class
Color

[Colum
Manu

Produ

4. For this example, we're going to use the reraren function to get the value
of a field from a related table. We'll add a new column that contains the
month and year when a product will be available.

. Call the new column Available From. Remember that it's okay to use
spaces in column names. In fact, this is the preferred style as it makes the
name more business-friendly for report end users. Type the following
DAX expression into the DAX editor:

Available From =
CONCATENATE (
RELATED ('Available Date'[Quarter]) & " "
RELATED ('Available Date'[CalendarYear])
)

. This will create a new column called Available From that will contain
the Quarter and Year columns from the related record in the Available
Date table, concatenated, as shown in Figure 3-21:

Shapes Marketplace File Theme = Relationships | gl New Qui

Custom visuals Themes Relationships Calcula

RELATED({ 'Available Date'[CalendaryYear])) | Field
Status |~ - Available From ~ l
. Q1 2005 A D
M 01 2005
n 02 2005 ~
M 01 2006 5 ¢
n 02 2005
it 04 2007 = C
n Q3 2006 oL
i Q4 2007 zC
N Q1 2005 T C

Bl

M 01 2008

»
12007
’ o M
n 03 2008
Q

Figure 3-21: The new Available From column added to Product table

7. As you can see, there are blank values where the related Available For
Sale From date is before January 1, 2005. This is because January 1,
2005 1s the first date in the Available Date table. To handle situations
where the date is before or after the dates in the related Available Date
table, change the column definition to the following:

Available From =
SWITCH (
// the value that the evaluated expression should equate to
TRUE (),
// is available for sale date before 01/01/2005?
'Product' [Available For Sale Date]

< DATE (2005, 01, 01), "Before Q1 2005",
// is available for sale date after 31/12/20112?
'Product' [Available For Sale Date]
> DATE (2011, 12, 31), "After Q4 2011",
// if we get here, available for sale date is in range
CONCATENATE (
RELATED ('Available Date'[Quarter]) & " ",
RELATED ('Available Date'[CalendarYear])

This final expression uses the swrrcn function to step through a number of
options. We could also use nested IF statements, but the swrrcs function is
clearer to read.

While calculated columns are a relatively easy way to expand your data
model, you must remember that they are stored in memory with the rest of your
data model. Each calculated column will take up space in memory, which can
have a significant impact, especially when adding calculated columns to large
tables.

Adding a calculated table

Calculated tables allow you to extend your data model by adding new tables.
They are created by a DAX expression, which also creates the table's values.
In this section, we will walk through a couple of examples of creating
calculated tables to store intermediate results. Unfortunately, calculated tables
are not available in Excel Power Pivot.

Let's go over what calculated tables can do and what they have:

e They have the ability to store intermediate results for querying.

They have relationships with other tables, just like imported tables.
They contain columns that have a definable data type and format.

They can be used in report visualization, such as imported tables.

They are recalculated when the base table's data is updated or refreshed.
They are in-memory tables that use RAM.

To create a calculated table through Power BI Desktop, follow these steps:

1. Switch to the Report or Data view.

2. From the Calculations section of the Modeling ribbon, select Create
New Table. This will bring up the DAX editor, as shown in Figure 3-22.
Here, you can name the table and add the DAX expression that defines it:

wl | H = | Chapter 3 - Building Data Models - Power Bl Desktop

Home View | Modeling Help

— Data type: Home Table: o® @ Language ~
Ijg I 3
LEI LL? Format: Data Category: Uncategorized &5 Q Linguistic Schema ~
Manage New New MNew New Sotby . o N -) Manage Viewas New Edit Mark as
Relationships ~ Measure Column Table Parameter Column $ 70 .o Auto . Default Summarization: Don't summarize Roles Roles Group Groups Date Table
Relationships Calculations What If Sort Formatting Properties Security Groups Calendars QBA
1 Table = r o ;
i Visualizations > Fields
o Bk U
= gD OGHS vE A
@ —_—
= D ~ R Dat
r ~ E@ Prod
, ® - ~ @ sal
T ~ B Stop

Add data fields here =

Figure 3-22: Adding a calculated table using the DAX editor

3. In this first example, we're going to create a table that contains a list of
manufacturers that have been extracted from the Product table. To do
this, enter the following DAX expression:

Manufacturer =
DISTINCT ('Product' [Manufacturer])

4. Now, we have a new table called Manufacturer that acts like a normal
table. It can be used in relationships and reporting visualization. The
screenshot in Figure 3-23 shows that the table can be related to the
Product table:

7 Product

Al Available For 5ale Date

(14 Availzble From

1 Brand

[Class 21 Manufacturer
A Color

0l Manufacturar

A Product Desaription

(8 Product Mame

Al Product Subcategory Na--

(i Productkey

Al ProductSubcategorykey
(il Status
A Stock Type

Figure 3-23: Creating a relationship with a calculated table

5. In the following example, we're going to create a slightly more complex
version of this table that includes the total sales for each manufacturer.
To achieve this, we'll use the sumarrze function. Type in the following
DAX expression to create the new table:

Manufacturer Sales =
SUMMARIZE (
Sales,
'Product' [Manufacturer],
"Total Sales",

SUM ('Sales' [Sales Amount])
)

. Finally, we're going to create a table that contains the top 10 products,
based on the quantity of products that have been sold in the Sales table.
To do this, we will create a table called Product Sales. This is very
similar to the table we created in step 5. The DAX expression to use for
this is as follows:

Product Sales =
SUMMARIZE (

Sales,

'Product' [ProductKey],

"Total Sales",

SUM ('Sales'[Sales Quantity])
)

. Then, we will use the DAX roer function to create a table that contains
the top 10 products. The DAX expression for this is as follows:

Top 10 Products =
TOPN (
10,
'Product Sales',
'Product Sales'[Total Sales],
DESC
)

. To complete our expanded data model, we need to create relationships
between these new tables and the Product table. Once completed, the
expanded data model should look like the one shown in Figure 3-24:

= Dae " Available Date

21 CalendarDayOfWeek

7 CalendarMonth

21 CalendarCuarter

7] Calendarieck A CalendarCQuarter
71 Calendarear [CalendariVeek
P Dty 71 Datekey | A Calengartear

Dateksy
{1 Dy of Week [Datekey
A Month " Sales P Day of Week

{0 Quarter 1 Dateley

Fl Week Al Discount Amount
i Year (T Discount Quantity " Produc ales
Al Productey = Product 7 Productey
{1 Retum Amount
Pl Retum Quantiy
(1 Sales Amount
Pl Saks Quantity
(0 Saleskey
A Total Cost
il Unit Cost
A Urit rce

[CalendarDayOfiiek
A Calendarhdonth

[0 CalendarQuarter

1 Calendarieek

(1 Calendartear

7 Avalabla For Sale Date) Total Sales
1 Availzblz From '
A brand

A Color

{2 Manufacturer

1 Product Description
{1 Product Name

A Product Subcategory Na-. 21 Manufacturer
(i Productkey = Total Sales
A ProductSubeateqonyiey

il Status

A Stock Type

" Manufacturer Sales

Figure 3-24: The expanded data model with calculated tables

Other DAX functions that can be useful when creating calculated tables

include crossgoIn, UNION, NATURALINNERJOIN, NATURALLEFTOUTERJOIN, INTERSECT, CALENDAR,

and CALENDARAUTO.

We will be 100killg at some examples ofusing the carenoar and carenparavro
functions in the next section, where we will create a custom date table.

Calculated tables can also be expanded by the addition of calculated columns,
just like imported tables. However, just like calculated columns, calculated
tables are stored in memory, so you will need to keep the table size in mind to
ensure optimal performance.

Adding a measure

As we saw 1n cnapter 1, What is DAX?, measures are a way of creating
aggregations of data using a DAX expression. A measure always involves
some form of aggregation, such as calculating the sum of a numeric column,
for example, the sales amount. Measures invariably involve more complex
DAX expressions than a calculated column or calculated table. You also need
to take the evaluation context into account.

Before we start creating any measures, we will create a measures table to
store them. Again, this is something we can do in Power BI Desktop, but not
Excel Power Pivot. We'll look at creating measures in Power Pivot and SSAS
Tabular in the next chapter.

From the Power BI Desktop, do the following:

1. Switch to the Report or Data view.

2. From the External data section of the Home ribbon, select Enter Data.
This will bring up the Create Table editor, as shown in Figure 3-25.
Leave everything as is but rename the table from Tablel to Key
Measures:

Create Table

Column1

Name: | Key Measures

Load Edit Cance

Figure 3-25: The Create Table dialog in Power BI Desktop

3. Click Load. A new table called Key Measures will be created with just
one empty field called Columnl. For now, do not delete this field or
Power BI will think the table is redundant and automatically delete it.

4. Once you have created a measure in the table, you can delete Columnl.
The next time you open the Power Bl file, the table will have been
converted into a special measure table.

Having created our Key Measures table, we can add a few example measures
to our data model.

From the Power BI Desktop, we will do the following;

1. Switch to the Report or Data view.

2. Right-click on the Key Measures table on the Fields pane and select
New measure. This will bring up the DAX editor, where you can name
the measure and add the DAX expression that defines it.

3. For our first measure, we will keep things simple by creating a measure
that calculates the sum of the Sales Amount column in the Sales table. To
do this, use the following DAX expression:

Sum Of Sales Amount = SUM (Sales[Sales Amount])

4. Once created, this new measure can be used in report visuals, where it
will work within the evaluation contexts created by other columns that
are used within the visual. In Figure 3-26, the new measure has been
added to a table to show the sum of sales by product subcategory. It also
includes the Sales Amount field that this measure is built upon. You will
see that it gives the same result. While we have created the measure
explicitly by including the Sales Amount field in this table, DAX is
creating the same measure implicitly to give the desired result:

Product Subcategory Mame
il

Sales Amount

Sum Of Sales Amount

Blustooth Headphones
Camcarders

Cameras & Camcorders Accessories

Car Video

Cell phones Accessories
Computers Accessories
Deskdops

Digital Cameras

Digital 5LR Cameras
Home & Office Phones
Home Theater System
Laptops

Monitors

Mowvie DVD

MP4EMPS

Printers, Scanners & Fax
Projectors & Screens
Recording Pen

Smart phones & PDAs
Televisions

Touch Screen Phones
VCD & DVD

Total

£41,907 458.9135
£1,335,302769.92
£51,643,775.8286

£306,518,844.52
£120,017,198.2572
£111,023,802.1072
£508,196,937.0
£365,052 489,926
£809,994 738,356
£45 333,160.9512
£709,120,510.209
£933,130,583.776
£268,114,052.77
£165,804,705.9611
£65,190,616.3964
£251,762,342.2
£1,107,199.413.48
£44 516,259,001
£473 35945745
£307,373,914.4742
£300,493 447,58
£36 807,545,561
£8,341,224,364.8324

£41,907 458.9135
£1,335,302,769.92
£51,643,775.8286

£306,518,844.52
£120,017,198.2572
£111,023,802.1072
£508,196,937.0
£365,052,489.926
£809,994 738,356
£48 333,160.9512
£709,120,510.209
£933,130,593.776
£368,114,052.77
£165,804,705.9811
£65,190,516.3964
£281,762,342.2
£1,107,199,413.48
£44 516,259,001
£473 350457458
£307,373,914.4742
£300,493 447,58
£36,807,845.561
£8,341,224,364,8324

Figure 3-26: Adding a measure to a report visual in Power BI Desktop

5. For the following example, we will create a measure that is a little more
complex. For this measure, we will use one of the DAX aggregatex
functions. These functions are much like the normal versions of their
equivalent function. However, instead of just working on the values in a
single column, they iterate through the rows for the current filter context
and apply a DAX expression, before carrying out the operation of the
function.

6. Let's illustrate this. Once again, from the Key Measures table, create a
new measure. In the DAX editor, enter the following DAX expression:

Sum Of Sales Less Returns =
SUMX (
Sales,
Sales[Sales Quantity] - Sales[Return Quantity]

7. In this example, we have created a measure that iterates through the rows
in the Sales table for the current filter context. For each row, it calculates
the sales quantity minus the return quantity, almost as if we had added
this as a calculated column. Then, it calculates the sum of all of these
resulting values, much like the sov function would, had this been a
calculated column.

8. For the final example of a measure, we will add a ratio to our data
model to give us a percentage of returns over sales. Again, from the Key
Measures table, create a new measure. In the DAX editor, enter the
following DAX expression:

% Returns Over Sales =

DIVIDE (
SUM (Sales[Return Quantity]),
SUM (Sales[Sales Quantity])

)

9. Since we are dealing with a percentage here, we can finish off the
measure by making sure it has the correct data type of Percentage and
that it is formatted to have one decimal place displayed. We can do this
from the Formatting section of the Modeling ribbon, as shown in Figure
3-27:

Data type: Decimal Number

Format: Percentage -

$-|%]| * G0t =
Formatting

Figure 3-27: Formatting a measure from the modeling ribbon in Power BI Desktop

As we have seen, measures allow you to extend your data model without
increasing memory usage. In many cases, a measure can be used in place of a
calculated column. In fact, wherever possible, you would be wise to use
measures over calculated columns. Although measures can have an impact on
the performance of your report, the advantages of reducing the size of your
data model outweigh the disadvantages.

The downside to using measures is that the DAX required to produce them
can be quite complex. In addition, you need to be aware of the evaluation
context. However, measures are perhaps the most powerful way DAX can
extend your data model and give you deeper insights into your data.

It's a date

In this section, we will look at how you can use DAX, with the create table
function, to create a custom date table.

In our data model, we already have some date tables. However, as we have
seen, there are no dates prior to December 1, 2011. In the Product table, we
have products that have values in the Available For Sale Date field that are
before this date. To get around this issue, we are going to create a custom date
table that covers all of the dates referenced in the Product table.

To start, we will need to create a calculated table. From Power BI Desktop,
follow these steps:

1. Switch to the Report or Data view.

2. From the Calculations section of the Modeling ribbon, select Create
New Table. This will bring up the DAX editor, where we can name the
table and add the DAX expression to define it. In the DAX editor, enter
the following expression to create the new base date table:

Available Date New =

CALENDAR (
FIRSTDATE ('Product'[Available For Sale Date]),
LASTDATE ('Product' [Available For Sale Date])

)

3. This will create a basic date table with a single column called Date.
Check that this column is correctly formatted as a date and rename it to
DateKey.

4. Next, mark the new table as a date table. To do this, right-click on the
new date table in the Fields pane and select Mark as date table. This
will bring up the dialog shown in Figure 3-28. Change the Date column
to DateKey and click OK:

Mark as date table

Select a column to be used for the date. The column must be of the data type 'date’ and must contain

only unigue values. Learn maore

Date column

DateKey v

Validated successfully

@' When you mark this as a date table, the built-in date tables that were associated with this table
are removed, Visuals or DAX expressions referring to them may break,

Learn how to fix visuals and DAX expressions

oK Cance
Figure 3-28: M arking a table as a date table in Power BI Desktop

5. Now, we will replicate the columns from the original Available Date
table using DAX expressions. We'll start by adding the CalendarYear
column. Create a new column and enter the following DAX expression:

CalendarYear =
YEAR ([DateKey])

6. Next, create the CalendarQuarter column using the following DAX
expression:

CalendarQuarter =
INT (YEAR ([DateKey]) &
IF (MONTH ([DateKey]) < 4, 1,
IF (MONTH ([DateKey]) < 7, 2,
IF (MONTH ([DateKey]) < 10, 3,
4
)

7. Create the CalendarMonth column using the following DAX expression:

CalendarMonth =
INT (YEAR([DateKey]) & FORMAT (MONTH ([DateKey]), "00"))

8. Create the CalendarWeek column using the following DAX expression:

CalendarWeek =
INT (YEAR([DateKey]) & FORMAT (WEEKNUM([DateKey]), "00"™))

9. Create the CalendarDayOfWeek column using the following DAX
expression:

CalendarDayOfWeek =
INT (YEAR([DateKey]) & FORMAT(WEEKNUM([DateKey]), "00") & WEEKDAY (
[DateKey]))

10. Create the Year column using the following DAX expression:

Year =
"Year " & [CalendarYear]

11. Create the Quarter column using the following DAX expression:

Quarter =
IF(MONTH ([DateKey]) < 4, "Q1",
IF(MONTH ([DateKey]) < 7, "Q2",
IF(MONTH ([CalendarMonth]) < 10, "Q3",
no4m
)

12. Create the Month column using the following DAX expression:

Month =
FORMAT ([DateKey], "MMMM")

13. Create the Week column using the following DAX expression:

Week =
"Week " & WEEKNUM([DateKey])

14. Finally, create the Day Of Week column using the following DAX
expression:

Day Of Week =
FORMAT ([DateKey], "DDDD")

Now that we have created our custom date table to replace the original
Available Date table, all we need to do is delete the original table, rename
our new table to Available Date, and recreate the relationship with the
Product table.

You will also need to amend the DAX code for the calculated
column, Available From, in the Product table so that it no longer checks for
out of range dates. To do this, use the following DAX expression:

Available From =
CONCATENATE (
RELATED ('Available Date'[Quarter]) & " "
RELATED ('Available Date'[CalendarYear])
)

In addition to the carenpare function, there is another DAX function called
carenparavro. This function looks through your data model and creates a date
table that covers all of the years referenced in the model.

Internally, the carenparavro function uses the carewoar function and provides a
date range that includes the earliest date in the model that is not in a
calculated column and the latest date in the model that is not in a calculated
column.

The carennaravro function can also take a parameter that is an integer from 1 to
12, which represents the end month of the fiscal year. The date range that's
returned includes all dates between the beginning of the fiscal year for the
start date and the end of the fiscal year for the end date.

One thing to note when using the carenparavro function over the carenoar function
is that it scans all of the dates in a data model to establish the start and end
dates. There is a risk with this approach that it will use dates that don't need
to be included and you end up with a table that covers a much wider range
than necessary.

Summary

In this chapter, you learned about why it is important to build a well-defined
data model. Not only does it make it easier to understand and report from as
an end user, but it also makes it easier to work with as a Bl professional by
making the execution of DAX code easier to understand. From here, you
learned about a couple of different schema designs with the star and
snowflake shaped schemas. You also learned about some important data
modeling concepts that you then put into practice by building a simple data
model using hands-on examples.

Then, you looked at how to load data and create relationships and how to use
DAX functions to extend your data model by creating calculated columns,
calculated tables, and measures. Finally, you learned how to extend your data
model further by adding a custom date table to it using the carenoar function.

In the next chapter, we'll build on this knowledge by looking at how to import
data and create data models using Excel Power Pivot and SSAS Tabular.

Working with DAX in Power BI,
Excel, and SSAS

In this chapter, we will look at the three different platforms that support DAX
— Power BI Desktop, Excel Power Pivot, and SQL Server Analysis
Services (SSAS) Tabular. By the end of this chapter, you will be familiar
with using the DAX formula editor in Power BI Desktop. You will also have
learned how to load data into an Excel Power Pivot data model and expand it
using DAX formulas. Finally, you will learn how to use DAX with SSAS
Tabular, import the data model from Excel Power Pivot, and use DAX to
query the data in SSAS.

The chapter is broken down into the following sections:

e Working with DAX in Power BI Desktop
e Working with DAX in Excel Power Pivot
e Working with DAX in SSAS Tabular

Working with DAX in Power BI
Desktop

In the previous chapter, we created a data model using Power BI Desktop.
As part of that, we used DAX to add tables, columns, and measures to our
data model.

With Power BI Desktop, you enter DAX code using the DAX formula editor.
In this chapter, we will look at the DAX formula editor in more detail. We'll
look at how you can speed up the process of entering code using some of the
shortcut keys that are available in the editor. We'll then look at how the built-
in IntelliSense helps to reduce errors when entering code. We'll also look at
how to use the editor so that your code is indented correctly, helping to
maintain an easy-to-read layout.

The DAX formula editor

Figure 4-1 shows the DAX formula editor being used to enter some DAX
code in Power BI Desktop:

“ Home View Modeling Help

X Cut y |_| — [Text box | Mew Measure [_
1 [r=|
DE@Copy P D D [-/: D \j L |__‘|;Image D‘ Eg JNewCqumn ll
Paste : Get Recent Enter Edit Refresh New MNew AskA Buttons From From Switch Manage . Fub
Fomat Fainter Data~ Sources Data Queries » Pager Visual Question - Cf shapes » Marketplace Fil2 Theme= Relationships | 2 Mew Quick Measure
Clipboard External data Insert Custom visuals Themes Relationships Calculations Sh
0 1 ¢ Sales Quantity = DIVIDE(T
2 // the numerator: sum of sales quantity for the current filter
context M ke
5 3 SUM(Sales[Sales Quantity]), %
) s) b
4 // the denominator: sum of sales quantity for the current filter =
h 4
5 /| context, but for ALL manufacturers Ty
6 CALCULATE(= -
7 SUN(Sales[Sales Quantity]), u """
Jalue
8 ALL('Product ' [Manufacturer]) ,
Add data fiek
)
Drillthrou
Cross-report

Figure 4-1: Entering DAX code in the formula editor in Power BI Desktop

By default, when you start to enter your DAX code, the editor will resize as
you type in text. If you want to expand the editor screen to make use of the
whole screen's height, click on the down arrow on the right-hand side of the
editor. Likewise, you can shrink the editor screen back down again by
clicking on the up arrow.

You can alter the size of the font by holding down the Ctr/ key and either
rolling the scroll wheel on your mouse or by pressing the plus and minus keys.

In addition to these shortcut keys, there are other shortcut key combinations
that you can use, and these are given in the following table:

Shortcut Result

Key Combination

Column selection page down Ctrl + Shift + Alt + PgDn
Column selection page up Ctrl + Shift + Alt + PgUp
Comment lines Ctrl + KC
Copy line Ctrl + C
Copy line down Shift + Alt + Down Arrow
Copy line up Shift + Alt + Up Arrow
Cut line Ctrl + X

Delete a word

Ctrl + Delete

Delete line Ctrl + Shift + K
Find and replace a word Ctrl + D
Go to beginning of file Ctrl + Home
Go to beginning of line Home
Go to end of file Ctrl + End
Go to end of line End
Go to selected line number Ctrl + G
Indent line left Ctrl + [
Indent line right Ctrl +]
Insert cursor Alt + Click

Insert cursor above

Ctrl + Alt + Up Arrow

Insert cursor below

Ctrl + Alt + Down Arrow

Insert new line above

Ctrl + Shift + Enter

Insert new line below

Ctrl + Enter

Jump to matching bracket

Ctrl + Shift +\

Move the line down

Alt + Down Arrow

Move the line up

Alt + Up Arrow

New line above

Ctrl + Shift + Enter

New line with indent

Shift + Enter

New line without indentation

Alt + Enter

Redo DAX code

Ctrl +Y

Scroll line down

Ctrl + Down Arrow

Scroll line up

Ctrl + Up Arrow

Scroll page down

Alt + PgDn

Scroll page up

Alt + PgUp

Select all occurrences of current selection Ctrl + Shift + L

Select all occurrences of current word Ctrl + F2
Select current line Ctrl +1
Toggle the 'Tab moves focus' feature Ctrl + M
Uncomment lines Ctrl + KU
Undo DAX code Ctrl + Z
Undo last cursor operation Ctrl + U

It is important to remember to use the combination of Shift + Enter or Alt +
Enter when you want to move to a new line. If you just hit the Enter key, then
the editor will think you have finished entering your DAX expression. Unless
you have finished, this will invariably result in an error.

will help you to follow the formatting rules we looked at in chepeer 2, Using DAX

9 Using the Alt and Enter key combination will give you an indented new line, which
Variables and Formatting.

The DAX formula editor is IntelliSense enabled. This means that it will give
you information about the DAX function you are typing in, along with some
suggestions for the parameter values. Figure 4-2 shows an example of
IntelliSense in action:

1 Measure =
2 sum(|

SUM(ColumnName)

Adds all the numbers in a column.
‘Available Date'
‘Available Date'[CalendarDayOfWeek]
‘Available Date'[CalendarMonth]
'Available Date'[CalendarQuarter]
'‘Available Date'[Calendar\Week]
'‘Available Date'[CalendarYear]
'‘Available Date'[DateKey]
'‘Available Date'[Day Of Week]
'‘Available Date'[Month]
'Available Date'[Quarter]
'‘Available Date'[Week]

Ll L

Figure 4-2: IntelliSense in action in the DAX formula editor

The following are some additional points on using the DAX formula editor in
Power BI Desktop:

o The IntelliSense feature helps you to create syntactically correct DAX
expressions by giving you a list of suggestions on what to type next, as
you type in your expression.

e Ifyou are partway through entering some DAX and decide to cancel
what you're entering, click on the X in the top left-hand corner to close

the editor and discard its content.

e Ifyou have finished entering the DAX code, click on the tick symbol to
save your work and close the editor.

e Clicking on any bracket within your DAX code brings up another helpful
feature. The editor will automatically highlight the opposing start or end
bracket, which is especially helpful if you are using nested expressions.

Along with the work that we did on creating and expanding our data model in
chapter 3, Building Data Models, this concludes our look at using DAX with
Power BI Desktop. In the next section, we will look at a similar exercise
using the Excel Power Pivot add-in to import data and create a data model.

Working with DAX in Excel Power
Pivot

Power Pivot 1s an add-in for Excel that originally became available with
Excel 2010. It essentially gives you SQL Server Analysis Services running
directly within your copy of Excel. What this allows you to do is create an
in-memory data model using data imported from external sources as well as
from worksheets within the Excel file itself.

Just like the data model we created in chapter 3, Building Data Models, it is a
collection of tables and relationships that can be expanded using DAX to
create new columns and measures. However, unlike Power BI Desktop, you
cannot use DAX to create new tables in Excel.

Installing and enabling the Power
Pivot add-in

While Power Pivot is included as an integral part of certain versions of Excel 2013
and beyond, Excel 2010 requires a separate component to be downloaded and
installed.

The following link provides further details of what versions of Office include Power Pivot
ﬂ and Where toﬁnd the downloadfor Excel 201 0 https://support.office.com/en-us/article/where-is-power

-pivot-aa64e217-4b6e-410b-8337-20b87elc2a4b.

If you have a version of Excel that includes the Power Pivot add-in, you may also
need to enable it. To do this, follow these steps:

1. Go to File, click on Options, and then click on Add-Ins.
2. In the Manage dialog, select COM Add-ins from the drop-down list, and then
click on Go.

3. This will bring up the COM Add-Ins dialog shown in Figure 4-3:

L7
Add-ins available: 0K
/] Dax Studio Excel Add-In
|| Microsoft Data Streamer for Excel Cancel

Microsoft Power Map for Excel

% Microsoft Power Pivot for Excel Add

Remove

Location: C\Program Files\Microsoft Office\Root\Office 18\ ADDINS \PowerPivot Excel Add-in'PowerPivotExcel
Load Behavior: Load at Startup

Figure 4-3: The COM Add-ins dialog in Excel

https://support.office.com/en-us/article/where-is-power-pivot-aa64e217-4b6e-410b-8337-20b87e1c2a4b

4. Check the Microsoft Power Pivot for Excel box (some versions will have a
slightly different name) and click on OK.

5. With Power Pivot enabled, you will have a new tab available that will give
you the Power Pivot ribbon, as shown in Figure 4-4:

Fle ~ Home Inset Pagelayout Formulss Data Review View Add-ins Help PowerPivot Table Design

ME B £ 4

Manage | Measures KPls | Addto Detect | Seftings
- v | Data Model

Data Modell Calculations Tables |Relationships

Figure 4-4: The Power Pivot ribbon in Excel

The Power Pivot ribbon contains some options required to start building your data
model. The most important of these is the Manage icon in the Data Model section.
This opens the Power Pivot window where you load and prepare data, or work on
the data already imported into your data model. We will look at this and a couple of
the other icons in more detail as we go through the process of building our data
model.

Adding data to an Excel data model

When dealing with data sources for an Excel data model, they can either be
external or they can be Excel tables from the current workbook.

Much like we did when building a data model with Power BI Desktop in chapt
er 3, Building Data Models, we'll start by importing some data from an
Access database. Once we have done this and made sure the relationships
between tables are correct, we'll add data from a table to the current
workbook:

1. To start, click on the Manage icon in the Data Model section of the
Power Pivot ribbon. This will open the Power Pivot window, as shown
in Figure 4-5:

File Home Design Advan o)

C-1 I:h ’_] D D Data Type SortAtoZ IHI AutoSum
D k=g Format SortZto A Create KPI
Paste From Data Fro Oth Bc t g Refresh PivotTable Cleal II Sort \ Find
Dat; b

se Service Sou Con ns Clear Sort Flt Columr
Clipboard Get External Data Formatting Sort and Filter Find Calculations

fx

Figure 4-5: The Excel Power Pivot window

2. Next, we'll import data from an Access database. From the Power
Pivot window, click on From Database in the Get External Data section
of the Home ribbon, and then select From Access from the drop-down
menu, as shown in Figure 4-6:

Home Design Advanced
il
] 3| &7 D::- E

et

Paste From From Data From Other Existing Refresh
Database = Service Sources Connections

Clipboard [From SQL Server

gz From Access

D From Analysis Services or PowerPivot

Figure 4.6: Getting data from an Access database

This will open the first screen of the Table Import Wizard, as shown
in Figure 4-7. From here, we can add the path to the Access database
file and, if necessary, enter details of the username and password
required to connect to the database. In this example, we only need to
give the file path:

Table Import Wizard

Connect toa Microsoft Access Database

Enter the information required to connect to the Microsoft Access database.

Friendly connection name; |Access

Database name: Browse...
Log on to the database
|Jser name:
Password:
[] Save my password
Advanced.. | Test Connection
¢ Back Next » Finish Cancel

Figure 4-7: Entering details of the Access database with the table import wizard

3. Click on Browse to open the Open file dialog, as shown in Figure 4-8,
from where we can select the Access database to open:

2]
A » ThisPC » Windows (C) » DAX » Samples v & Search Samples

"o

Organise v New folder = I | 0

I This PC A Name Date modified Type Size
J 3D Objects @ ContosoSales 18/07/201913:58 Microsoft Access... 300,524 KB
) Deskiog @ ProductCategories 18/07/201913:50 Microsoft Access .. 416 K8
= Documents
; Downloads
J') Music
i/ Pictures
m Videos
=, Windows (C)
- LENOVO (D:)

& Network v

File name; Microsoft Office Access 2007-2 +

<

Open Cancel

Figure 4-8: Selecting the Access database with the file exp lorer dialog

In this exercise, we're going to import some data from the
ContosoSales Access database.

4. Select that file and click on Open. This will open a new dialog, as
shown in Figure 4-9, asking us whether we want to select data from a
list or import data based on the results of a query:

KA Ed

Choose How to Import the Data
YYou can either import all of the data from tables or views that you specify, or you can
write @ query using SGL that specifies the data to import.

(®) Select from a list of tables and views to choose the data to import

(*) rite a query that will specify the data to import

< Back Meat » Finish Cancel

Figure 4-9: Selecting the method to use to import data from an Access database

For now, we'll go with the option to select from a list of tables.

5. Click on Next to open the Select Tables and View dialog, as shown
Figure 4-10. Here, we can select which tables we want to add to our
data model. Using this dialog, we can also give them more business user-
friendly names.

6. Click on Finish to start the data import process:

Table Import Wizard @

Select Tables and Views
Select the tables and views that you want to import data from.

Database: C:\Users\ianho'OneDrive'\Documents\DAX Book'\Samples' ContosoVV 2 Contoso Sales accd
Tables and Views:

[] Source Table Friendly Name Filter Details
2 | DimChannel Channel
[| DimDate Date
(117 | DimEntiy
= | DimProduct Product
= | DimProductSubcategory Product Subcategory
[1E | DimPromation
] | FactSales Sales
Select Related Tables | Preview & Filter
< Back Next » Finish Cancel

Figure 4-10: Selecting the tables and views to import from an Access database

Our data model will now be created and data from the selected
Access database tables will be imported. Progress will be displayed
on the Import dialog, as shown in the following screenshot.

7. If there are any errors, click on the Details link in the appropriate
message column; as shown in Figure 4-11, otherwise click on Close
when the import has completed:

Table Import Wizarc |E||E|
Imporiing
The import operation might take several minutes to complete. To stop the import
operation, click the Stop Import button.
Total: 5 Cancelled: 0
‘@ Success Success: 5 Errar: 0
Details:
Waork ftem Status Messzage
@ Channel Success. 4 rows transfemed.
@ Date Success. 2,556 rows transfemed.
@ Product Success. 1,630 rows transfemed.
@ Product Subcategory Success. 44 rows transfemed.
@ Sales Success. 2,282,482 rows transfemed.
@ Data preparation Completed Details
Close

Figure 4-11: Clicking on the details link will show more information

You will now be returned to the Power Pivot window where you will have a
tab for each of the tables you've just imported. Each table will look much like

a worksheet. However, a Power Pivot table can contain far more rows of data
than a worksheet. The screen is split into two sections, with the top being the
Data View and the bottom section being the Calculation Area. This is where
you can create measures using DAX.

The screenshot in Figure 4-12 shows the Power Pivot window with tabs for
each of the tables we chose to import from the Access database:

I3 Home Design Advanced 9

i b G B S XEA T BxEE

Paste From FromData FromOther Existing Refresh PwotTabIe FJnnatU a0 o0 . CI?ar-‘H sotby Find Data |Diagram Show |Calculation

Database~ Senite* Sources Conmections = 3 Tnan zpCersot fites Coumn View | View Hidden| Area
(lipboard (et External Data Formatting Sort and Fitter find Calculations View
[Saleskey] + fr
ﬂ"

201 07/0s/200.., £321.4 £699.00

26527 2/05/00.. 1 2 305 1 1 a4 £699.00 10

26702 30/09/200.., 1 298 05 1 1 By £699.00 10

P15 /0/20.. 1 264 05 1 1 By £699.00 10

52306 26/06/200.., 1] 05 1 1 84 £699.00 10

67230 28/10/200.., 1 1 375 1 1 Bn4 £699.00 10

796 12/05/200.., 1 PE] 05 1 1 a4 £693.00 10

§720 17/04/200.., 1) 05 1 1 8n4 £699.00 10

91129 26/05/200.., 1 A5 305 1 1 Bh4 £699.00 10

103148 0/04/200.., 1 9 05 1 1 By £699.00 10

140079 20/04/200.., 1 160 05 1 1 8a4 £699.00 10

150342 12/06/200.., 1 % 375 1 1 Bn4 £699.00 10

155121 05/06/200... 1 87 05 1 1 a4 £699.00 1

175299 23/06/200.., 1 4 05 1 1 a4 £693.00 10

185802 12/05/200.., 1 92 305 1 1 a4 £699.00 10

189564 24/10/200.., 1 %5 305 1 1 Ba4 £699.00 10

190221 30/04/200.., 1 L)) 05 1 1 By £699.00 10

191830 14/06/200.., 1 P 05 1 1 84 £699.00 10

196400 29/05/200.., 1 40 375 1 1 Bn4 £699.00 10

207348 17/09/200.., 1 il 0 1 1 a4 £699.00 10

208970 31/10/200.., 1] 05 1 1 8ny £699.00 10

;
¥

{)
Channel | Date | Product | Product Subcategory | Sales

Record: 1 ¢ 1df

Figure 4-12: The Power Pivot window with tabs added for each table

If you want to rename or delete a column from your data model, right-click on
a column heading and select the appropriate option from the drop-down menu,

as shown in Figure 4-13:

-ir‘l EﬁutUSum'
2w Iy =

Create KPI

Clear Al Sort by Find
Fitters Column

T

Data |Diagram| Show | Calculation

Yiew | View |Hidden

sart and Filter Find Calculations

Area

— |Umtc__t_:l—3

. Create Relationship...
MNavigate to Related Table
1 1 :
= Co
1 1 ILEI o
Insert Column
: : F Delete Col
ete Lolumns
1 1
Rename Calumn
1 1 -
Freeze Columns
1 1
Urfreeze All Columns
1 1
.] Hide from Client Tools
€2 Column Width...
1 1
Filter
1 1 ;
eacrption...
1 1 -
1 1 £321.44 £699.00
1 1 £321.44 £699.00

10
10
10
10
10
10
10
10
10
10
10
10
10

ReturnQuantity

Figure 4-13: The column heading context menu where you can rename or delete a column from the data model

For now, close the Power Pivot window and return to the worksheet. This
worksheet contains an Excel table called Stores, which contains a list of store
names. To add this table to our data model, select a cell in the table and click

on the Add to Data Model icon in the Tables section of the Power Pivot
ribbon, as shown in Figure 4-14:

Power Pivot

Table Design

Fle Home Insert Pagelayout Formulas Data Review View Add-ns Help
@ 044
Manage = Measures KPls Addto Detect | Settings
v * | DataMadel
ataModel! Calculations Tables |Relationships
V] v ko1
A B C D
1 Ky A Sto i preName preDescriptio v
2| 1|Store Contoso Seattle No.1 Store Contoso Seattle No.1 Store
3) Store Contoso Seattle No.2 Store Contoso Seattle No.2 Store
4 3 Stare Contoso Kennewick Store Contoso Kennewick Store
5 4 Stare Contoso Bellevue Store Contoso Bellevue Store
6 5 Store Contoso Redmond Store Contoso Redmond Store
7 6 Store Contoso Yakima Store Contoso Yakima Store
g 7 Stare Contoso Granger Store Contoso Granger Store
g g Store Contoso Sunnyside Store Contoso Sunnyside Store
10 g Store Contoso Toppenish Store Contoso Toppenish Store
1 10 Store Contoso Wapato Store Contoso Wapato Store
12 11 Stare Contoso Cle Elum Store Contoso Cle Elum Store
13 12 Store Contoso North Bend Store Contoso North Bend Store
14 13 Store Contoso Snogualmie Store Contoso Snogualmie Store
15 14 Store Contoso Fall City Store Contoso Fall City Store
16 15 Store Contoso Renton Store Contoso Renton Store
17 16 Store Contoso Everett Store Contoso Everett Store

Figure 4-14: Adding a worksheet table to an Excel data model

This will reopen the Power Pivot window and you will see the Excel table
has been imported and a new tab added, as shown in Figure 4-15:

Home Design Advanced 0

= E; m D Eh D Data Type: SotAtoZ fH] ¥ Autosum » F =
®—j '[} 9 SotZto A Create KPI £]

i Paste From From‘Data From Other Existinlg Refresh PivotTable F-erato: 8 4 Clgaril\ Sortby Find Dlata D\algram Show Calculation
Database~ Sevicer Sources Comnections — + © §+% 3 %an ClearSort Fiters Column View | View [Hidden| Area
Clipboard Get External Data Formatting Sort and Filter Find Calculations View
| [Storekey] = fx| ¥
s Bswenpe Bsetone B sueteonn O asiciom :
1 Store Contoso Seat.. ContosoSeattle ...
2 Store Contoso Seat.. Contoso SeattleN...
3 Store ContosoKen... Contoso Kennewic...
4 Store Contoso Bell.. ContosoBellevue ...
5 Store Contoso Red... ContosoRedmond...
6 Store Contoso Yaki... Contoso Yakima St...
1 Store Contoso Gran... Contoso Granger St..
g Store Contoso Sunn... Contoso Sunnyside...
9 Store Contoso Topp... Contoso Toppenish...
10 Store Contoso Wap... Contoso Wapato St...
11 Store Contoso CleE... ContosoCle Elums...
12 Store Contoso Nort... Contoso North Ben..,
13 Store Contoso Snog... Contoso Snogualm...
14 Store ContosoFall... Contoso Fall City St...
15 Store Contoso Rent... Contoso Renton St...
16 Store Contoso Ever... Contoso Everatt 5t...
17 Store Contoso Spok... Contoso Spokane ...
18 Store Contoso Vera... Contoso Veradale ...
19 Store Contoso Che... Contoso Cheney St...
20 Store Contoso Engl... Contoso Englewoo...
21 Store Contoso Whe... ContosoWheatRid...
L
A
L
.Channe\ . Date ‘Pmduct . Product Subcategory ‘Sales \M

Record: " ¢ 1of 306

Figure 4-15: Power Pivot window showing imported Excel table

When we imported the tables from the Access database, they were imported
with the existing relationships that were already defined there. However, as
there are no relationships defined with the Excel table, we will need to
manually add a relationship. To do this, switch from the Data View to the

Diagram View, on the View section of the Home ribbon. Figure 4-16 shows
the Stores table without a relationship to any other tables:

Home Design Advanced

& P ’] D E; Data Type: 4 H ¥, AutoSum D Dg f-(

= & o Format: Al] Create km : :
Paste _ From FromData From Other Existing Refresh PivotTable g @ o Clear All Sortby Find Data |Diagram| Show | Calculation

EEI Database~ Servicer Sources Connections M $% 2 W ¢ Filters Column View | View |Hidden| Area
Clipboard Get External Data Formatting Sort and Filter Find Calculations View

T Product Subcateg..
T Date
I ProductSubcatego...

T ProductSubeatego...
) ProductSubcatego...

[Datekey

7 FullDateLabel

[DateDescription
[CalendarYear

[CalendarYearLabel

) ProductSubeatego...
[ProductCategoryKey
7] ETLLoadID

[CalendarHalfear [Product £ LoadDate

[Channel
7 ChannelKey 2 [ProductKey
£ Channellabel . [Productlabel
£ ChannelName | [ProductName
T ChannelDescription [0 ProductDescription

T ETlLoadiD [ProductSubcatego...
T LoadDate

I Stores

LU saicancy [] StoreKey

[DateKey [7] StoreType

[channelKey 1 StoreName

[Storekey [StoreDescription
[ProductKey |2 Store Count

[PromotionKey

[CurrencyKey
[UnitCost
[UnitPrice

Figure 4-16: The imported table without a relationship

To create a relationship, drag a line between the StoreKey in the Sales table
to the StoreKey in the Stores table. This will create a relationship between the
two tables, as shown in Figure 4-17:

Home Design Advanced 0

P @m D’. P Data Type: H Ez::;u:;l D Dg f\

Format:
Paste From FromData From Other Existing Refresh PivotTable z o8 4 Clear All Sortby Find Data Diagram| Show |Calculation
Database~ Service™ Sources Conmections + M §7% 9 % 4n Filters Column View | View Hidden Area
Cliphoard Get External Data Formatting Sort and Filter Find Calculations View

T Product Subcateg..

T Date
) ProductSubcatego...

[T Datekey

7] FullDateLabel

[T DateDescription
£ Calendar¥ear

) CalendarYearlabel

) ProductSubcatego...
7 ProductSubateg...
£ ProductSubcatego...
1 ProductCategorykey
T ETLLoadID

I CalendarHalfYear 1 Product ™ LoadDate

£ Channel

71 ChannelKey T ProductKey

£ Chanmellabel 7! Productlahel

21 ChannelName . 7 ProductName

7 ChannelDescription . T ProductDescription

T ETlLoadID ™ ProductSubcatego...

1 LoadDate

I Stores

L aicsncy [StoreKey

[DateKey [StoreType

[channelKey 1 StoreName

[Storekey [StoreDescription
£ Productiey 1fd Store Count

£ PromotionKey

[CurrencyKey

[UnitCost

£ UnitPrice

Wo-—— iy

Figure 4-17: The imported table with the relationship created

We are now in a position to start expanding our data model using DAX. We'll
start by creating a new measure. For now, close the Power Pivot window and
return to the worksheet.

Extending an Excel data model

On the Power Pivot ribbon, do the following:

1. Click on Measures in the Calculations section.
2. Select New Measure from the drop-down menu. This will open the
Measure dialog shown in Figure 4-18.

Here, we can, do the following;

e Create a new measure, defining the table it will be stored with, its name,
and of course the DAX code used to define it.
e We can also specify the category and format:

Table name; | Stores v

Measure name: |5’mre Court

Description: |
Formula: | fy | Checkformula

=COUNT(Stores|StoreKey])

Formatting Cptions

Category:

General Format: Whole: Number v
Mumber

Cumency

Date

TRUE/FALSE Use 1000 separator ()

0K Cancel

Figure 4-18: The M easure dialog in Excel Power Pivot

e We can define measures in the calculation area of a table in the Power
Pivot window.

The screenshot in Figure 4-19 shows the measure we created for the Stores
table. In the calculation area, we can see the value that was returned for the
measure, while the DAX used to define it is shown in the DAX formula
editor:

File Home Design

G &

[Storekey] -

Advanced

3B RE™

Paste From From Data From Other Existing

1 Store
2 Store
3 Store
4 Store
5 Store
b Store
7 Store
g Store
9 Store
10 Store
11 Store
12 Store
13 Store
14 Store
15 Store
16 Store
17 Store
18 Store
19 Store
20 Store
21 Store

lStore Count: 306

Record: M ¢ 1of 306

Channel | Date | Product | Product Subcategory | Sales |Stores

Farmat : Whale Number »

Refresh PivotTable
EB Database~ Sewvice* Sources Connections v

Clipboard Get External Data

Contoso Sedt...
Contoso Ken...
Contoso Bell...
Contoso Red...
Contoso Yaki...
Contoso Gran...
Contoso Sunn...
Contoso Topp...
Contoso Wap...
Contoso CleE...
Contoso Nort...
Contoso Snog...
Contoso Fall ...
Contoso Rent...
Contoso Ever..
Contoso Spok...
Contoso Vera...
Contoso Che...
Contoso Engl...
Contoso Whe...

§+% 3 WM
Formatting
J[Store Count:=COUNTStores[StoreKey])

ﬂ B storerype @ ﬂtoreDesrnphon Add Column

Contoso Seat...

Contoso Seattle N...

Contoso Sesttle N...

Contoso Kennewic...
Contoso Bellevue...

Contoso Redmond....
Contoso Yakima St...

Contoso Granger St...
Contoso Sunnyside...
Contoso Toppenish...
Contoso Wapato St...
Contoso Cle ElumsS...
Contoso North Ben...
Contoso Snogqualm...
Contoso Fall City S...
Contoso Renton 5t...
Contoso Everett St...
Contoso Spokane S...
Contoso Veradale ..

Contoso Cheney St...
Contoso Englewoo...
Contoso Wheat Rid...

Find

Find

3 AutoSum * D Dg

] Crete kP

B

Data |Diagram Show |Calculation
View | View Hidden| Area

Caleulations View

<<

Figure 4-19: Showing a measure in the calculation area with the DAX for it shown in the formula editor

Now, let's define a new measure in the Sales table:

1. Switch to the Sales tab and then select any cell in the calculation area.
2. Enter the following code into the DAX formula editor:

| Sum of Sales Amount := SUM (Sales[SalesAmount])

The result of the new DAX measure will be displayed in the calculation area,
as shown in Figure 4-20:

£3,214.40 £6,990.00
£3,214.40 £6,990.00
£3,214.40 £6,990.00
£3,214.40 £6,990.00
£3,214.40 £6,990.00
£3,214.40 £6,990.00

Isum of Sales Amount: £8,341,224,364.83 |

Figure 4-20: The result of the sum of sales amount measure shown in the calculation area

We can extend the data model further by using DAX to define calculated
columns for a table. To add a new column, do the following:

1. Click on the column heading of the end column, where it says Add
Column.

2. Then, in the DAX formula editor, enter the DAX that will define the new
column.

3. In our data model, in the Sales table, add a new column using the
following DAX code:

Sales Less Returns :=
Sales[SalesAmount] -
Sales [ReturnAmount]

The screenshot in Figure 4-21 shows the Sales table with the new calculated
column added and the values calculated for the new column. Remember, as
with Power BI Desktop, calculated columns will add to the overall memory
footprint of your data model, so they should be used sparingly:

G Home Design Advanced 0
B Delete = i) 6 Undo *
] Freeze = fk "D EKE] ELD \')FD d Redo
I o Insert Caleulation ~ Create Manage Table Mark as
Width Function Options= Reletionship Relationships Properties Date Table » Table~
Columns Calculations Relationships Calendars Edit
[ales Less e, 4
Sales[SalesAmount] -
Sales[ReturnAmount]

870051 £55.00 £35.40 £180.48 £318.60 1 01/01/2010 01/01/201000 £259.60

970052 £6.95 3 f4.17 £21.4 £37.53 1 01/01/2010... 01/01/201000:... £30.58

970053 £269.90 3 £161.94 £825.60 £1,457.46 1 01/01/2010... 01/01/201000:... £1,187.56

570034 £59.99 3 £35.99 £183.48 £323.95 1 01/01/2010... 01/01/201000:... £263.96

970055 £39.90 3 £23.94 £122.04 £215.46 1 01/01/2010... 01/01/201000:... £175.56

70056 £109.00 3 f65.40 £33342 £586.60 1 01/01/2010... 01/01/20000C:.. £475.60

970057 £326.00 3 £193.60 £391.20 £1,760.40 1 01/01/200... 01/01/200000:.. £1,434.40

70058 £56.50 3 £34.14 £174.06 £307.26 1 01/01/200... 01/01/200000:.. £230.36

970059 £50.00 3 £20.00 £152.94 £270.00 1 01/01/200... 01/01/200000:.. £220.00

570060 £15.50 3 £3.4 £43.66 £85.86 1 01/01/2010.... 01/01/200000:.. £65.96

870061 £13.00 3 £7.80 £39.78 £70.20 1 01/01/2010... 01/01/200000:.. £57.20

370062 £31.95 3 fn £104.70 £204.93 1 01/01/2010... 01/01/200000:.. £166.98

970063 £12.99 3 £1.79 £39.72 £70.15 1 01/01/2010... 01/01/200000:.. £57.16

570064 £5.99 3 £3.99 £30.54 £33.95 1 01/01/2010... 01/01/20100C:.. £43.96

970065 £143.40 3 £86.04 £438.66 £718.36 1 01/01/2010... 01/01/201000:.. £630.96

870066 £328.00 3 £196.80 £905.04 £L77.20 1 01/01/2010... 01/01/201000:.. £1,443.20

570067 £302.00 3 £18.20 £833.28 £1,630.80 1 01/01/2010... 01/01/201000:.. £1,328.80

570068 £45.00 3 £29.40 £149.88 £264.60 1 01/01/2010... 0101201000, £215.60

970069 £159.00 3 £119.40 £349.06 £1,074.60 1 01/01/2010... 01/01/201000:... £875.60
A
v

{

Channel | Date Product | Product Subcategory | Sales | Stores

Record: ™ ¢ 570054

Figure 4-21: Adding the sales less returns calculated column to the sales table

That concludes our look at building a data model with Excel. However, in the
next section, we will look at how this data model can be used as the basis of
building a data model using SSAS Tabular.

Working with DAX in SSAS
Tabular

Microsoft added the tabular model to SQL Server Analysis Services with the
release of SQL Server 2012. As with Power BI Desktop and Excel Power
Pivot, it is an in-memory database that utilizes compression algorithms to
store large amounts in memory instead of storing it on disk. This means that,
unlike the multidimensional version of SSAS, the tabular model does not
require aggregations to be pre-calculated and stored to offer fast,
summarized data.

So far, we've looked at how to import data and build data models using
Power BI Desktop and Excel Power Pivot. In each case, the data is imported
and stored in the host file. While this is fine for limited use, it does make it
difficult to share and reuse the data model. With Power BI Desktop, it is at
least possible to publish the data model to the Power BI online service. For
Excel Power Pivot, you could copy and share an Excel file. However, in
addition to obvious security risks involved with this, it also makes it difficult
to keep changes to the data model in sync as it will end up residing on
multiple copies of the original file.

To get around this 1ssue, it is possible to import an Excel Power Pivot model
into a SQL Server Data Tools (SSDT) project and then deploy it to an
instance of SSAS Tabular. Once we have created the project, it is possible to
make changes to the data model, including adding additional calculated
columns and measures. In fact, it is also possible to create a data model from
scratch using SSDT, much like we did when we built the model using Excel
Power Pivot.

The important point with deploying a data model to an instance of SSAS
Tabular is that, once deployed, it can be used by multiple users in multiple
files. Whenever an updated model is deployed, the changes will be
propagated whenever the data is refreshed in the destination file.

Importing the Excel Power Pivot
data model into the SSDT project

SQL Server Data Tools is a development environment built on top of
Microsoft Visual Studio. In addition to being used to create SQL Server
databases, it can be used to create and maintain an SSAS Tabular data model.
As part of this, it is possible to import an existing Excel Power Pivot
workbook.

For this exercise, we'll be using SSDT with Visual Studio 2019. The steps
we'll follow will be very similar to when we used SSDT with previous
versions of Visual Studio. We will be deploying the resulting data model to an
instance of SSAS running on a copy of SQL Server 2017.

In addition to installing a version of Visual Studio 2019, you will also need to install
the Visual Studio extension for Microsoft Analysis Services Projects, before you can
follow along with this example. For more information, see the Microsoft
documentation for SSDT at:

https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt
We'll start by creating a new project:

1. Open Visual Studio and select File > New > Project from the menu.

2. This will open a dialog for Create a new project, as shown in Figure 4-
22.

3. This screen will look somewhat different on earlier versions of Visual
Studio. However, whatever version it is, select the option to Import from
PowerPivot:

https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt

Create a new project

Recent project templates

Alist of your recently accessed templates wil be
displayed here.

| Pl
Al lznguages v Alplatforms v Alproject types
% Analysis Services Multidimensional and Data Mining Project Now

0" i Analysis Services project for creating multidimensional and data mining models.

Analysis Services Multidimensional and Data Mining Project e

rD An Analysis Services project for creating multidimensional and data mining models.

[2 Import from Server (Multidimensional and Data Mining) Naw

I Creates a multidimensional and data mining project by extracting the metadata from an exsting
rultidimensional and data mining database an an Analysis Services server,

- Analysis Services Tabular Project m
Vo Analysis Services project for creating tabular models,

(.'):l Import fram Server (Tabular) Naw

Vv Creates a tabular project by extracting the metadata from an existing tabular database on zn Analysis
Services senver,

™ Impot from PowerPivot x|
Creates a tabular project by extracting the metadata and data from a PowerPivot for Excel workbook.

ASPNET Web Application (NET Framewark)

@ Project templates for creating ASP.NET applications, You can create ASP.NET Web Forms, MV, or Web ARI
applications and add many other features in ASP.NET.

VisualBasic Windows ~ Cloud Wb
ﬂﬁ(!“ Class Library (NET Standard)
% A project for creating a class library that targets NET Standard.,
G+ Android 105 Lnux macOS Windows Library
B Class Library (NET Standarc]
& A project for creating a class library that targets NET Standard.
VieualBasic Android 05 L macOS Windows Library
D“‘ Windows Farrns App (NET Framework)
A project for creating an application with a Windows Farms (WinForms) user interface

¢ Windows Deskiop

Figure 4-22: Creating a new Excel Power Pivot import project in Visual Studio

4. Next, give the new project a name, as shown in Figure 4-23. For this
project, we'll call it ContosoSales Tabular.

5. Click on Create to create the project files:

Configure your new project

Import from PowerPivot

Project name

ContosoSales Tabular

Location

C:\Users\ianho'\source\repas .

Solution name 0

ContosoSales Tabular

D Place solution and project in the same directory

Framework

NET Framewaork 4.7.2 v

Back Create

Figure 4-23: Configuring a new project to import data from Excel Power Pivot

6. The next screen, shown in Figure 4-24, will ask whether you want to use
an Integrated workspace or a Workspace server. If you use an integrated

workspace, then you do not need an instance of SSAS at this stage.
However, you will still need an instance of SSAS to deploy your data
model to when it 1s built. For this exercise, I have a local instance of
SSAS running on my machine, so I will use localhost for my workspace,

as shown in the following screenshot:

Select an Analysis Services instance to use while authoring projects.

(0 Integrated workspace

(7 [=]

Integrated workspace eliminates the need to provide an explicit AS server instance.,

® Workspace server

localhost

(inherited)

Click here for mare information about compatibility level,

[] Do not show this message again.

0K

Test Connection

Cancel

Figure 4-24: Choosing whether to use an integrated workspace or a workspace server

7. We now need to point to the Excel Power Pivot workbook we want to
import into our SSDT project. At this point, we'll point to the Excel file
we created in the previous exercise. Click on Open, as shown in Figure

4-25,t0

start the import process:

0
Organise »

Software

2 This PC
J 30 Objects
I Desktop
=/ Documents
‘ Downloads
Ji Music
i Pictures
B Videos
i, Windows (C)
- LENOVO (D)

o Network

v ThisPC » Windows (C:) » DAX » Samples

New folder

A Name

@ Hands-On Bl with DAX (Chapter 4)

L 4

v

Date modified

A0 I G gL E
18/08/2019 08:34

File name: | Hands-On Bl with DAX (Chapter 4)

W

=
Search Samples P
=R
Type Size
Microsoft Bxcel W.. 63,848
H

PowerPivot for Excel File (*xlsy v

Open Cancel

Figure 4-25: Selecting the Excel Power Pivot workbook to use for the data import

SSDT will now start the process of importing the data model from the Excel
Power Pivot file. When it completes, you will be left with a screen that looks

very much like the Power Pivot window that we were working with in the
previous Excel exercise.

We will start off with the data view, with tabs for each of the tables imported
from the data model. As with Power Pivot in Excel, it is here that you can add
calculated columns to tables, and create measures, using DAX entered with
the DAX formula editor. Figure 4-26 shows this screen, along with the
column and measure we created:

DG File Edit View Project Buld Debug Test Analyze Tools Extensions Window Help Search Visusl Studio (Cil+) P ContosoSales Tabular o - 0 X
o Hﬁ"’“f‘ O p;E‘EEﬂm@ﬁe\edPerspemve<Default> -pﬁ‘ﬁ&“ﬂ-)}; _ i

Developi = + P St -

Modelbim # X v Solution Explorer

[SelesTess Refr... = | g
v 5um Sales Less Returms: =SUM (Sales[Sales Less Retums]) A m &, ,@ .5 G g @‘ ﬁ

SuoEs3oN

Search Solution Explorer (Ctl+) p-

- loaate - UpdateDate - SaeslessRetms 'A mSn\utiun‘CuntnsuSa\esTabuIar'U of 1 project]
0040 00... DYOY201000:00.., 26000 4 5, ContosoSales Tabular
DR, OO AD.. [P :'RE{E{E”‘“

1# Model.bim

01/01/201000... 01/03/201000:00.., £262.2)
0040 00... DOY20100000.., 26000
OL/0Y/A000... DL/OL/2010 00:00... 250
D0y 00... DLOY20 0000.., 260
01042010 00... DL/OY/2010 00:00.., 25,20
01/01/201000... 01/01/201000:00.., 2622
0040 00... DYOY201000:00.., 26000
OL/0Y/A000... DL/OL/2010 00:00.., 2500
01/01/201000... 01/03/201000:00.., £262.2)
0040 00... DOY20100000.., 26000
OL/0Y/A000... DL/OL/2010 00:00... 250
D0y 00... DLOY20 0000.., 260
01/01/201000... 01/03/2010 00:00... 2500 Solution Explorer ETTEAIES
01/01/201000... 01/01/201000:00.., 2622
0040 00... DYOY201000:00.., 26000
OL/0Y/A000... DL/OL/2010 00:00.., 2500
01/01/201000... 01/03/201000:00.., £262.2) :E
0040 00... DOY20100000.., 26000 i N
01/01/201000... 01/03/201000:00... iyl Cumency Symbol £ English (United Kingd

Decimal places 2

xoglool Jssojdxg 1amuss

Properties

um Sales Less Description
Returns:

08 224,081,192 Format Curteney

Formula SUM(Sales[Sales Less R
Measure Name Sum Sales Less Retums

Show Thousand Separ False v

{

Measure Name
Channel | Date | Product | Product Subcategory SalesJStores The name o the measure ast s taed inthe

Record: 1€ € 1of2282482 3 3 B modl

ErrorList - Qutput

[Reacy # Addto Source Control = !

Figure 4-26: The data view in SSDT

You can also switch to the model view, which again looks very much like the
model view you get with the Excel Power Pivot window. Figure 4-27 shows
the data model as it was imported from the Excel file. From here, you can
manage relationships and create hierarchies. You can also delete, hide, and
rename objects in the model:

Dq Fle Bt View Poct Buld Debug Test Anle Tools Fetensions Window Help SearchVisusl Sudio(CtlQ) | ContosoSeles Tabular o - 0 X

A1 T DR 7.9 0 DB seecPegedie Deub> -PE|BO|F-T-FRANEE. i

Developi + v b Sariv

v Solution Explorer v X
QO o568
i e Search Solution Explorer (Ctrl<) P

amaodxg smaas
SuoREIIaN

T Datekey : £ Solution ' ContosaSales Tbular' 1 of 1 project)
T FullDateLabel 4 [ContosoSeles Tabular

T DateDescription ol References

I Clendarter 1 Vodeloim

T CalendarYearlabel
T CalendarkalfVear

1

#

A T Producey -
T Product shel
T Productilame
T ProductDescription
T ProductSubcetegory..

thamel
9 Chamneley T Saleskey
1) ChannelLabel F Datekey]
T Channelliame 1J£ T channelkey . _é_
7, ChamnelDesarption I Storey
T EMlLcadD T Productey
T LoadDate , ¥ Promationkey . T Manufacturer

Solution Explorer WEIMEHIVES

Propeties
T ProducSubcateqory.,
T ProductSubcategary..

T ProductSubcategory.

T ProductSubcategory..

IE ProducCategorykey

T ELoadiD

Stores
[E Storeley
[E StoreType
E Storehzme
fE StoreDescription
Store Count

T -t gy [

Error Lt Qutput

[Ready # AddtoSourceConfral « &

Figure 4-27: The Excel Power Pivot data model after being imported

With the Power Pivot data model successfully imported, and any additions or
amendments completed, we are ready to make it available to a wider
audience. To do this, we need to deploy it to an instance of SSAS Tabular.

Deploying your data model to an
instance of SSAS Tabular

Before we deploy our data model to SSAS, we need to check the project's
properties to ensure it is configured to the correct instance of SSAS.

In the Solution Explorer window, do the following:

1. Right-click on the project name, ContosoSales Tabular, and click on
Properties from the context menu.

This will bring up the properties for the project, as shown in Figure
4-28. Ensure you are happy with the server and the database name. In
this example, it is pointing to an instance of SSAS Tabular running on
a local machine. However, in reality, this should be a server that is
accessible to the business intelligence users:

Configuration: | Active(Development] v Platform: | Active(x86)

4 Configuration Properties
Deployment

¥ Deployment Options
Processing Option
Query Mode

v Deployment Server
SErVEr
Edition
Database
Madel Name
Version

v DirectQuery Options

Impersonation Settings

Server
Deployment Server

=]
v | Configuration Manager...

Default
In-Memaory

localhost

Developer
ContosoSales Tabular
Model

Unknown

Default

QK Cancel Apply

Figure 4-28: The properties dialog for the SSDT Excel Power Pivot project

2. Click on OK and, once again, right-click on the project name. This time,
select Deploy from the context menu, as shown in the Figure 4-29:

Solution Explorer
@E-o-secam F-
Search Solution Explorer (Ctrl+;)
bl Solution 'ContosoSales Tabular' (1 of 1 project)
a EHc
el BB Build

[T Rebuild

suolEIYION

Deploy

Clean

Scope to This

Mew Sclution Explorer View

Add
Manage NuGet Packages...

Set as StartUp Project
Source Control

Cut Ctrl+X
Paste Ctrl+W
Remove Del

Rename

Unload Project
Load Project Dependencies

Open Felder in File Explorer

Solution E

Properties Alt+Enter

Properties

“ (8 ContosoSales Tabular Project Properties -

Figure 4-29: Deploying a data model from the context menu

The deployment of the data model will now begin and you will see a window
showing the progress of the deployment. Figure 4-30 shows this window for

the completed deployment, giving the final status of each table and the number
of rows transferred:

Deploy @

Deploying

The deployment operation may take several minutes to complete,

o Success 7 Total 0 Cancelled
T Success 0 Error
Details:
Work [term Status Message
¥ |Deploy metadata Success. Metadata deployed.
@ Channel Success. 4 rows transferred.
@ Date Success. 2,356 rows transferred.
9 Product Success. 1,690 rows transferred.
@ Product Subcategory Success, 44 rows transferred.
9 Sales Success, 2,282 432 rows transferred,
@ Stores Success. 306 rows transferred.
Stop Deployment Close

Figure 4-30: Final status of tables after deployment of the data model completes

With the data model deployed, we now need to move from using SSDT to
SQL Server Management Studio (SSMS). If you want to make further
changes to the data model, then you will need to return to SSDT and make the
changes there before redeploying.

Working with the tabular database
in SSMS

Now that our data model has been deployed to a tabular database in SSAS,
we can use SSMS to carry out some basic management tasks, albeit in a
limited way. We can also use it to query data in the database using the browse
option, or by using DAX expressions.

The screenshot in Figure 4-31 shows the Object Explorer, where we can see
the database where our data model has been deployed. There is also a second
database, with the same name plus a long suffix, which is the workspace
database. If you used an integrated workspace for your project in SSDT, then
you will not see this second database:

Object Explorer * 01X

Connect~ ¥ ¥ ¢ M

= h JOSHSGAMELAPTOP (Microsoft Analysis Server 14.0.6.443 - JOSHSGAMELAPTOP\ianh
= Databases
= | J ContosoSales Tabular
= Connections

!] Access ContosoSales
[} B PushedDataSource-FO32E9FD-930DA-441C-A0CO-BRADASZESF25

= Tables
| Channel
~ Date
| Product
| Product Subcategory
] Gales
| Stores

Roles

l_,J Contosobales Tabular_janho_tb0462e-df29-41d6-838d- 7712930718

Management

Figure 4-31: The Object Explorer in SSM S showing deployed tables

Looking at the database, there are three nodes:

o Connections: This contains the connections to the data sources. Under
the properties for each connection, you can modify the connection string
along with a few other property settings. You cannot add or delete
connections in SSMS. This must be done in SSDT, with the data model
then being redeployed to SSAS.

e Tables: This contains a list of the tables in the database. You can right-
click on a table to view the table's properties, which are view-only and
cannot be amended.

e Roles: From here, you can assign permissions to users accessing the
database. When users are assigned to a role, they are granted the

permissions that have been granted to that role. You can add, delete, and
configure roles, and add and remove users from a role.

You can create row filters on a role. This specifies which rows in a table can
be queried by members of that role. These filters are created using DAX
formulas that will evaluate to true or false to determine what a user can
access.

Unlike with a relational database, you are limited with what you can do with
objects using Object Explorer. Instead, you need to right-click on the database
name in Object Explorer and click on Browse. This will open a window, as
shown in Figure 4-32, where you can browse the objects and their related
data:

ng Mode! [Browse] - Microsoft SOL Server Management Studio
Fle Edt View Project Cube Took Window Help

(0704
Object Explorer X
Comnect~ ¥ 7§ ¢+

Quick Launch (Ctr+)

P onox

el “1}) JOSHSGAMELAPTOR (Microsaft Analysi
2 | Databases
=} U ContosoSales Tabular
B [Connections

Dimension

Management i ChemelDesarnion

i |pdateDate
[[): Date
16 Poduct
]Qf Product Subcateqory

B [r_): Sales
i

i DiscountQuentity
i EllLoadlD

1 RefumAmount
i RetumQuantty
I i Sals Less Retums

Il Access ContosoSales \a Metzdata
1 PushedDateSource-FE | [<

£ 1 Tables Measure Group:
= Channel <Al v
= Date @ Model A um Sales Less Retuns
: Proguct gl Measures 4707017710,985
= Product Subcategory [[Sales 665 185924, 2030
= Gl ol SumSaes LessRetums
- B33589426,3683
1 Stores B Sutores

Roles . mnﬂ-ﬂ Store Count 1031303741.2754

- ‘ s

|| ContosoSales Tabulariznho G20 3 ﬁ il

Figure 4-32: Opening a window to browse objects and related data

4 TS EEEEE ERRLIF CHpED-.
Model [Browse] + X
2l Q| Language: Defalt v‘ i
PhitasTat [impot.. | [y i G@X | @‘%
@ Model Herarchy Operator Fiter Expression Parameters

To view some data, drag columns or measures from the list on the left-hand
pane to the bottom pane on the right. Here, we've dragged across the

ChannelName column from the Channel table, and the Sum Sales Less Returns
measure.

If you want to limit the data being returned, then you can do so by defining
filters in the top pane.

If you want to do some analysis on your data in a more familiar environment,
you can click on the Analyze in Excel icon on the top toolbar. Clicking on this
icon opens a new Excel file, with a connection through to the data model
already configured and a pivot table ready to use. Figure 4-33 shows an
Excel workbook ready to start work on some tabular data:

File Home Insert Page Layout Formulas Data Review View Add-ins Help Power Pivot PivotTable Analyze Design P search 13 share (2 Comments
PivotTable Name: | Active Field: — = =& I:\§ [h =] (o] =l [[7 Fields, Items, & Sets = E‘ g
PivotTablel =y = ks 5] I:DO o 0 £ OLAP Tools - [D o] ==

- — Insert Insert Refresh Change Data =~ Clear Select Move PivotChart Field +/- Field
[Boptions ~ 7 Slicer Timeline ~ Source v - ~ PivotTable List Buttons Headers

PivotTable Active Field Group Filter Data Actions Caleulations Tools Show ~
A B c D E F G H J K L M N o P -
1 PivotTable Fields v
2
: Show it | IR
4 | Tobuild a report, choose Search Je
3| fields fram the PivotTable
3 Field List o 2 Sales -
7 [Sum Sales Less Returns
3
- 3 Stores
® | e [] Store Count
10 H=E===
NQ==== 4 [E] Channel
==== ChannelDescription
12 o L -
13 [m—
14 Drag fields between areas below:
15
16 Filters Columns
17
18
12
20 Rows T Values
21
22
23
24
tmpSFES @D . R Defer Layout Update
B m - 1 + 00

Figure 4-33: Starting work with tabular data in an Excel worksheet

The other way to query data in the tabular database 1s through a query window
using DAX. To open a new query window, right-click on the database name in
Object Explorer and select New Query.

Querying SSAS Tabular data using
DAX

Unlike the DAX expressions we've used so far, DAX expressions in SSAS
Tabular always begin with the evarvare keyword. This keyword is followed by
a DAX expression that returns a table. This table expression defines the
query, much like SQL expression does in a relational SQL database, with the
evaruate kKeyword acting like the serecr statement.

The simplest DAX expression is the evaruare keyword followed by the name of
a table. This will act like serzcr +, returning all columns of all rows in a table.

Again, similar to SQL, you can specify an additional oroer =v clause to the
DAX expression to set the order of the returned rows.

The following expression will return all columns and rows from the Channel
table, sorted in ascending order of the values in the ChannelName column:

EVALUATE
'Channel’
ORDER BY
'Channel' [ChannelName]

If you want to specify more than one column after the ozper =v clause, then you
can, but they must be separated by commas.

The result of running this DAX expression can be seen in Figure 4-34:

¢ MSDAXCQuery2medar - OSHSGAMELAPTOP ContosoSle abulr (JOSHSGAMELARTORYanha} - Micrsof SO Sever Management tuio Cuick Launch (Ctt+ Q) P -l X
File Edit View OQuey Project Took Window Help

0-0[8- 0 LR BNy BRRRD(XIE[9-C |5 '

HAED- ; "zf" ContosoSeles Tebular = :

Object Explorer bl MSDAXQuery? msd. MELAPTOPiznho)* & X

Comnect~ ¥ ¥ 0 + EVALUATE |%
g fl'b JOSHSGAMELAPTOP (Microsoft Analysi ! ch annE]. 1
3 I Databases
U ContosoSales Tabular ORDER BY

U ContasaSales Tabular janho_f2b
Management

‘Channel ' [ChanneIName]

W% -

o Messages 3 Resuls
Channgl[Channe. . Channel[Channe.. Chamnel[Channe... Channel[Channe... Channel[ETLLoa.. Channel[loadDa.. Channel[Lndate...

3 0 Catalog Catalog 1 720081 1AT200914...
2 2 Onlng: Orlng 1 TT20081.. 11A7200914...
4 [Reseler Reseler 1 107200814 1772009 14...
1 0 Store Store 1 1T 107200814,

3 @ Query executed successfully,

JOSHSGAMELAPTOP JOSHSGAMELAPTOP\ianho | ContosoSales Tabular | 00:00:01

Figure 4-34: Querying data in a table using DAX

At the moment, we are retrieving all of the rows in a table. That's fine for a
small table such as the Channel table, but for something larger, we will
probably want to limit the number of rows being returned. To do this, we need
to use the rrrrer function.

The r11rer function takes two parameters. The first is a table expression and
the second is a Boolean expression. The Boolean expression is evaluated
against each row returned by the table expression, and rows that result in true
are returned in the function's result set.

The following is an example that would return the rows in the Sales table,
where the number of returns is greater than 3:

EVALUATE
FILTER (

'Sales',

'Sales' [ReturnQuantity] > 3
)
ORDER BY 'Sales'[SalesKey]

While this example will limit the number of rows being returned, it is still
returning all of the columns in the Sales table.

To limit the number of columns, we need to turn to the sumar:ze function. This
function is designed for grouping rows together and summarizing but, because
it returns a table, it can be utilized to limit the columns. However, to do this,
we do need to provide a column or group of columns that uniquely identify
each row, to ensure each row is returned.

The first parameter of the smnzrrze function is the table that you want to return
data from. The subsequent parameters are the columns that we want to include
in our query, including the columns that uniquely identify each row.

The following example will return six columns from the Sales table, including
the SalesKey column, which acts as the unique row identifier:

EVALUATE
SUMMARIZE (
'Sales',
'Sales' [SalesKey],
'Sales' [DateKey],
'Sales' [ProductKey],
'Sales' [SalesAmount],
'Sales' [ReturnQuantity],
'Sales' [ReturnAmount]
)
ORDER BY Sales([SalesKey]

In the following example, we will combine these two examples to give us a
filtered list, but only include the columns we need:

EVALUATE
SUMMARIZE (
FILTER (
'Sales’',
'Sales' [ReturnQuantity] > 3
) 4
'Sales'[SalesKey],
'Sales' [DateKey],
'Sales' [ProductKey],
'Sales' [SalesAmount],
'Sales' [ReturnQuantity],

'Sales' [ReturnAmount]
)
ORDER BY Sales[SalesKey]

Here, instead of specifying the Sales table as the first parameter, we are using
a table expression using the rrrre= function to filter the Sales table to just those
rows where ReturnQuantity has a value greater than 3.

Although we have only touched on what is possible to do with DAX and
SSAS Tabular, there are a number of methods that can be used to retrieve and
aggregate data. However, what we have covered will help to get you started
on building data models with Excel Power Pivot and distributing them for
wider access using SSAS Tabular.

Summary

In this chapter, we looked at the DAX formula editor in Power BI Desktop,
including a look at some of the shortcut key combinations you can use to help
when typing in DAX expressions. We looked at Excel Power Pivot and
learned how to use it to build a data model inside an Excel workbook, much
like we did using Power BI Desktop. We then learned how to import that data
model into an SSDT project and how to extend it using DAX. We then
deployed the data model to an instance of SSAS Tabular. Finally, we learned
how to query the data once it was in the SSAS Tabular database, using
SSMS.

In the next chapter, we will return to the subject of the evaluation context,
moving beyond what we learned in Chapter 1, What is DAX? We will take a
more in-depth look at the difference between the row context and the filter
context, and how these affect DAX functions.

Getting It into Context

In this chapter, we will move beyond the basics, and build upon what you
learned about evaluation contexts in chapter 1, What is DAX?.

We'll learn about evaluation contexts in more depth, including how Data
Analysis Expressions (DAX) are evaluated inside a context. We'll learn
about the difference between the row context and the filter context, and how
these affect different DAX functions. We'll also look at how changing filters
impact the evaluation of DAX functions. Finally, we'll look at some DAX
functions that can change the context under which an expression is evaluated.
These include the cavcurare function, the arw function, and the keeprrvrers
function.

The chapter is broken up into the following sections:

e Introducing evaluation contexts—part 2
e Deep diving into row context

e Deep diving into filter context

» Changing context using DAX functions

Introducing evaluation contexts —
part 2

The word context 1s derived from the Latin word contextus, which means
closely connected or interwoven. In modern language, context is the setting or
the set of circumstances around an event.

In DAX, when we talk about the evaluation context, we're talking about the set
of circumstances under which a DAX expression is evaluated, brought about
by the state of filters, slicers, interactions with visuals, and row and column
selections.

In chapter 1, What is DAX?, we took a brief look at the two types of evaluation
context that exist in DAX, which are the following:

e The row context
e The filter context

In this chapter, we'll look at these in more detail. We will use examples to
help us understand how changes in context change the results that we get back
from DAX expressions when they are evaluated within that context.

Strictly speaking, there is also a third context: the query context. The
Microsoft documentation describes this as "she filters applied by the user interface of a
pivot table”, While the same documentation describes the filter context as "se
filters applied by DAX expressions written in a measure”. However, these filters are
almost identical in their effects, so we will not cover them separately.

A thorough understanding of how DAX expressions are evaluated within these
contexts is essential if you are to truly master using DAX as a business
intelligence (BI) professional, especially as you move on to more complex
DAX expressions. While the theory may appear simple, there are some subtle
considerations you will need to be aware of if you are to fully understand how
your DAX expressions are being evaluated.

Let's start with just about the simplest measure we can create, shown here:

|Sum of Sales Amount Measure = SUM (Sales[Sales Amount])

As you might expect, this will create a measure that returns the sum of all
values in the Sales Amount column of the Sales table. If we now drag this
onto the report designer in Power BI Desktop or a pivot table in Excel, it will
give a single numeric value, as can be seen in Figure 5-1:

sum of Sales Amount Measure

£5,341,224 364.83

Figure 5-1: Returning the sum of sales with a measure

If we expand our pivot table by adding the Manufacturer field from the
Products table, we will get result shown in Figure 5-2:

Manufacturer Sum of Sales Amount Measure
A, Datum Corporation £619.803,753.56
Adventure Works £1,089734 248,74
Contoso, Ltd £1,497,920,768.30
Fabnkam, Inc. £1,874,455,854.35
Litware, Inc. £327,894 310.44
Morthwind Traders £20,163,003.97
Froseware, Inc. £954 540 220,53
Southridge Video £471,653,445.03
The Phone Company £673,525,407.96
Wide World Importers £811,532 851.91
Total £8,341,224,364.83

Figure 5-2: Adding a measure to a pivot table

Again, this may well be what you expect to see, especially if you already have
some experience of using pivot tables in Excel. But how is this achieved,
without the need to change the definition of the measure? In fact, this is an

example of the filter context in action. In this case, it is an implicit filter
context that is automatically created by adding a field to the pivot table.

With each cell in the Total Sales Amount column, our Sum of Sales

Amount Measure is being calculated within a context. In this case, it is a
filter being applied that is equal to the value in the corresponding
Manufacturer row. It should also be noted that the Total row is not adding up
the values of each manufacturer; instead, it is evaluating our measure in the
context of all Manufacturer values.

If we were to add the Class column from the Product table to the columns of
our pivot table, we would be adding another element to the filter context. This
means that with each cell, our measure is now being filtered, based on the
value of the corresponding Manufacturer and Class, as can be seen in Figure

5-3:

Manufacturer Deluxe Economy Regular Total

A, Datum Corporation £71,882 480.30 £97,045726.08 £450,875,547.18 £619,5803,753.56
Adventure Works £227,126317.70 £143905,083.74 £713,702,847.29 £1,089,734248.74
Contoso, Ltd £379,160,840.05 £277,868,875.39 £840,891,052.92 £1,497,920,768.36
Fabrikam, Inc. £420,114,104.80 £150969 14135 £1,303,372,608.20 £1,874,455,854.35
Litware, Inc. £6,606,812.05 £51,517.141.64 £260,770,856.75 £327,894,810.44
Morthwind Traders £11,551,306.53 £8,611,697.44 £20,163,003.97
Proseware, Inc. £375,496,320.02 £101,011,593.31 £478,032,306.30 £954 540 220.53
Southridge Video £79.416,013.42 £129,786,863.57 £262,450,568.03 £471,653,445.03
The Phone Company £197,094,815.33 £48,025,241.10 £428,405,251.53 £673,525,407.96
Wide World Importers £201,039,835.86 £191,553.277.11 £418939,738.94 £811,532,851.91
Total £1,957,937,540.43 £1,208,234349.82 £5175052,47458 £8341,22436483

Figure 5-3: Adding a measure to a pivot table with multiple columns

If we look at the totals, the totals for each Class column will be evaluated
within the context of the corresponding Class value, and for all manufacturers.

Next, we are going to use the same expression to create a calculated column
in the Sales table. This time, we'll call it Sum of Sales Amount Column, to
differentiate it from our measure, like this:

|Sum of Sales Amount Column = SUM (Sales[Sales Amount])

As before, we'll create a pivot table that includes Manufacturer. However,
we now get a very different result, as can be seen in Figure 5-4:

Manufacturer Sum of Sales Amount Column

A, Datum Corporation £1,660,245,638,800,605
Adventure Works £1,422 370,602 364 314.5
Contoso, Ltd £6,191,540 703,976,528
Fabrikam, Inc. £2,036.901,966,218975.3
Litware, Inc. f429 623 102,135,057.63
Morthwind Traders £255,399,948,826,803.16
Proseware, Inc. £2 014642 177,299 217.3
Southndge Video £1,953, 247 827,004 0723
The Phone Company £1,609816,407,187,370.8
Wide World Importers £1,274 906,096,818 4423
Total £19,038,694 470,691,388

Figure 5-4: Getting a unexpected result with a measure

Why is this? Well, if we look at Figure 5-5, we can see that for every record
in the Sales table, the value in the new calculated column is the total sum of
all the values in the Sales Amount column:

Amount B Discount Quantity B Discount Amount B Total Cost B Sales Amount B Sum of Sales Amount Column B

£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0

0

L= B s = T === TR R == |

L= I e R . T -]

L=es I e I . T o]

0

£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0

£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,144
£3,2144

£6,350.00
£6,350.00
£6,350.00
£6,350.00
£6,950.00
£6,350.00
£6,350.00
£6,350.00
£6,350.00
£6,950.00
£6,950.00
£6,350.00
£6,350.00
£6,350.00
£6,350.00
£6,950.00
£6,350.00
£6,350.00

Figure 5-5: Adding a measure that gives a sum total to a table

£8,341,224 364 3
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 83
£8,341,224 364 53
£8,341, 224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53
£8,341,224 364 53

This time, this might not have been what you expected. This is because
calculated columns do not use the filter context. Instead, they are evaluated
using the row context, or, in other words, within the context of each row. Later
in this chapter, we will look at a way you can change this behavior, using
something called context transition.

Deep diving into row context

The simplest way to explain row context is by adding a calculated column to a
table. Whenever we create a calculated column, the DAX expression behind it
will be evaluated using the row context. Each row in a table will have its own
row context that consists of the values in each of the columns for that row.

Let's show this by adding a calculated column to the Sales table. In this
instance, we'll add a column that calculates the Sales Amount, plus an
additional 20 percent to represent sales tax. We can do this using the
following DAX expression:

|Sales Amount with Tax = Sales[Sales Amount] * 1.2

Once created, DAX will iterate through all the rows in the Sales table,
evaluating the expression using the value of the Sales Amount column of the
current row. It will work its way through the table row by row, with each row
providing the row context needed to evaluate the expression.

If we look at the Sales table, with our new calculated column, we will see the
result will be different for each row and will depend on the value held in the
Sales Amount column:

Amount E Discount Quantity E Discount Amount B Total Cost B Sales Amount B Sales Amount with Tax E

£0
£0

£0

£0
£0
£0

£0

£0
£0
£0

£0
£0

Gy | G| L | G | ot | G | G | Cax | e | ey | G | s

£10.7
£521

£534

£136.0
£948.0
£948.0

£53.9

£16.5
£211
£744

t47
£234

Figure 5-6: Adding a calculated column to a table

£54.74
£493.02

£544.5

£855.36
£3,140.94
£3,140.94

£274.98

£168.24
£9342
£493.02

£474
£238.62

So, as can be seen in the preceding screenshot:

£96.66
£1,435.92

£1,014.60

£1,674.00
£8,532.00
£8,532.00

£435.46

£313.50
£260.79
£1,413.60

£88.35
£444.60

£115.99
£1,723.10

£1,217.52

£2008.50
£10,238.40
£10,235.40

£582.55

£376.20
£312.95
£1,696.32

£106.02
£533.52

e The value for the first row is £115.99, which equates to the value held in
the Sales Amount column of £96.66, multiplied by 1.2.
e For the second row, it is £1,723.10, which again equates to the value
held in the Sales Amount column, multiplied by 1.2.
e This will continue for every row in the table, each row using its own

row context.

At the point when our DAX expression for the calculated column is evaluated,
it only knows about the values of the columns in the current row. Unlike the
filter context, it does not follow relationships, so it does not know about the

values in the related row of a table on the one side of a one-to-many

relationship. It also doesn't know about the values in other rows of the table.

If we look at the data model we're using for the examples in this chapter, we
will see that the Sales table is a fact table. It is on the many side of a one-to-
many relationship, with the Date and Product tables, as can be seen in Figure

5-7:

T Date

M CalendarDayOfWeek
[CalendarMonth
[CalendarQuarter
[CalendarWeek
F1 Calendarfear
| Datekey

H Day of Week
F Month

E1 Quarter

£ Wesk

] Year

= Sales

i | DateKey
= Discount Amount
= Discount Quantity
= Productkey
=4 Return Amount
™ Return Quantity
™ Sales Amount
7 Sales Quantity
i SalesKey
7 Sum of Sales Amount Col..
= Total Cost
3 Unit Cost

Unit Price

Figure 5-7: One-to-many relationships in a data model

" Product o

| Available For Sale Date
™ Brand

7 Class

A Color

1 Manufacturer

A Product Description

A Product Name

= Product Subcategory M.
A ProductKey

™ ProductSubcategoryKey
7 Status

7 Stock Type

If we try to create a calculated column that uses an expression referencing a
column in a related table, we will see that it generates an error. Let's do this,
using the following expression:

|Sales Unit Cost = Sales[Sales Quantity] * Product[Unit Cost]

This results in the following error:

"A single value for column 'Unit Cost' in table 'Product' cannot be determined. This
can happen when a measure formula refers to a column that contains many values
without specifying an aggregation such as min, max, count, or sum to get a single
result."

However, there is a way to fetch the value of a specified column in a related
table on the one side of a one-to-many relationship. To do this, we use the
reraTED function.

So, to achieve what we were trying to achieve in the previous expression, we
need to modify it, as follows:

|Sales Unit Cost = Sales([Sales Quantity] * RELATED (Product[Unit Cost])

For the reraten function to work, it requires a row context. It also needs a
relationship to exist between the current table and the table that contains the
related data. The function will follow a chain of one or more many-to-one
relationships to get the required value.

Iterator functions

When you create a calculated column, DAX will implicitly create the row
context. However, let's try to create a measure using the same expression that
we used to create one of our calculated columns, as follows:

|Sales Amount with Tax = Sales[Sales Amount] * 1.2

We will get a similar error message to the one we got when we tried to
reference a row in a related table without using the reraren function, as can be
seen in the following code:

"A single value for column 'Sales Amount' in table 'Sales' cannot be determined.
This can happen when a measure formula refers to a column that contains many values
without specifying an aggregation such as min, max, count, or sum to get a single
result."

What this is saying is that it doesn't know which row in the Sales table to
refer to. When creating a measure, we can only refer directly to a column in a
table if we use it with an aggregation function, such as the suv function.
However, we can only use this method to aggregate the values in a column. It
cannot be used to evaluate an expression against the column.

In order to be able to create a measure that evaluates an expression against a
column in a table, we need to be able to explicitly create a row context.
Fortunately, we can do this using one of the iterator functions. An iterator
function will iterate over the rows in a specified table and will either apply a
filter or evaluate an expression.

In addition to the rrrrer function, which applies a set of filter rules to return a
filtered table, there are several x functions. These are so-called because they
have an X as the last character of their name.

These x functions will iterate over a specified table, evaluating a given
expression against each row in that table, before applying some form of
aggregation. Examples of x functions include averacex, counrx, maxx, Mnx, RANKX,

and suux. In effect, they create a temporary calculated column that is then used
to perform the aggregation, before being dropped.

All these x functions have a corresponding non-iterating aggregation function.
Each of the non-iterating aggregation functions uses the x version of their
function behind the scenes, in a process known as syntax sugar.

more complex functionality, making it easier for people to read and write. There are

ﬂ Syntax sugar is a process whereby the language contains simplified versions of
many examples of this in the DAX language.

For example, previously, we used the sux function to find the total of all the
values in the Sales Amount column of the Sales table. To define that
measure, we used the following expression:

|Sum of Sales Amount Measure = SUM (Sales[Sales Amount])

To achieve this result, DAX will use the sumx function. In reality, the
expression that is actually being evaluated is the following:

|SUMX (Sales, Sales[Sales Amount])

While this example might not look particularly interesting, it means that we
can use iterator functions to help us reduce the number of calculated columns
we need. Remember the calculated column we created, at the start of this
section, to calculate the sales amount plus sales tax? For that, we used the
following expression:

|Sales Amount with Tax = Sales[Sales Amount] * 1.2

However, using the sumx iterator function, we can replace this calculated
column with a measure, using the following expression:

|Sales Amount with Tax = SUMX (Sales, Sales[Sales Amount] * 1.2)

You may remember that this is the preferred approach as it reduces the
overall memory footprint of your data model. Wherever possible, you should
always create a measure unless there is a specific requirement for a new
column in a table, or there is no way of creating the same functionality
without using a calculated column.

Iterator functions can also be nested, with each iterator retaining its own row
context. The following is a typical example of using nested iterators:

Sales Amount with Tax (Deluxe Products) =
SUMX (
FILTER (
Sales,
RELATED ('Product'([Class]) = "Deluxe"
)I
Sales[Sales Amount] * 1.2

)

In this example, we can see the following;

e The rrurer function is the inner iterator and is being used to filter rows in
the Sales table to those relating to products in the Product table with a
Class equal to Deluxe.

e The outer iterator is the sumx function, which 1s used to calculate the total
of product sales, with a sales tax of 20% added.

Deep diving into filter context

As we have seen already in chapter 1, What is DAX?, the filter context can be
defined as a set of filters that are applied over the tables in a data model
before a DAX expression is evaluated. The context in which a DAX
expression is evaluated directly affects the result that is returned. This means
that the same DAX expression can return different results, depending upon the
context.

Filter context exists in the following:

e All visuals in Power BI
e A pivot table in Excel

Filter context can be applied through use of the following;

e Rows and columns in a visual or a pivot table
Slicers

Filters

Interaction with visuals (acting as filters)

e The carcurare function

A DAX expression is only evaluated when all the filters coming from the
context just listed have been applied to the tables in the data model. In the
case of a matrix visual in Power BI or a pivot table in Excel, this means that
for every cell, including totals, a DAX expression is evaluated only when the
context of the cell has been applied.

Let's look at through an example. Start by creating a new measure called Sales
Count, using the following expression:

|Sales Count = COUNTROWS (Sales)

As you might expect, this will return the number of rows in the Sales table. If
we now add this to a pivot table, along with the Manufacturer field from the
Product table, we will get the result shown in Figure 5-8:

Eianufacturer Sales Count

A. Datum Corporation 199,041
Adventure Works 170,523
Contoso, Ltd
Fabrikam, Inc. 244197
Litware, Inc. 51,506
Morthwind Traders 30,619
Proseware, Inc. 253,517
Southridge Video 234,168
The Phone Company 203,785
Wide World Importers 152,844
Total 2,282,482

Figure 5-8: Adding a count of sales to a pivot table

If we take, for example, the cell that is selected in Figure 5-8, then we would
say the initial filter context for this cell is coming from the row, which in this
case is where Product[Manufacturer| equals Contoso, Ltd.

The initial filter context is the filter context that is applied to tables in the data
model before any changes, if any, are made using the carcorare function.

If we were to add a slicer based on the Year field in the Date table, then the
initial filter context would include Year from the slicer, in addition to the
Manufacturer coming from the row of the pivot table.

For example, let's look at the screenshot shown in Figure 5-9:

Manufacturer Q1 Q2 Q3 Q4 Total Year

Year 2005
A. Datum Corporation 10861 11203 11390 11,447 44,991 Year 2006
Adventure Works 13537 15057 13785 14242 56,621 Year 2007
Contoso, Ltd 43661 46993 48988 49,131 188,828 Year 2008
Fabrikam, Inc. 16092 16852 15882 16424 65,250 lii:;ig?i
Litware, Inc. 3624 3961 4231 4206 16,022 Voar 2011
Northwind Traders 2371 2320 2323 2338 9352
Proseware, Inc, 15179 16287 16116 16,165 63,747
Southridge Video 13644 14252 14764 14944 57,604
The Phone Company 11,598 1&82313,402 51,064
Wide World Importers 11005 13676 13099 13555 51,335
Total 141,572 153,519 153,819 155,904 604,814

Figure 5-9: Initial filter context

Here, the initial filter context for the highlighted cell is as follows:

e Date[Year]| = Year 2009 (from the slicer)
e Date[Quarter] = Q3 (from the pivot column)
e Product[Manufacturer]| = The Phone Company (from the pivot row)

In order to follow through what is happening here in detail, we need to
remember that filters propagate down through relationships, from the one side
to the many side of a one-to-many relationship. In this instance, the following
steps take place prior to our DAX measure being evaluated:

1. All rows in the Date table are filtered to only include those where the
year is Year 2009 and the quarter is Q3.

2. The filtered rows are propagated down from the Date table to the Sales
table.

3. All the rows in the Product table are filtered to only include those where
the Manufacturer is The Phone Company.

4. The filtered rows are propagated down from the Product table to the

Sales table.
5. The Sales table exists with only the rows that have been filtered by the

propagated filters.

Only once these steps have been followed is our DAX expression for Sales
Count evaluated. This is repeated for each row, including the Total, which
does not include the filter coming from the Product table in the initial filter
context. It is important to remember that each cell in a row or a column of a
matrix visual or a pivot table is evaluated in its own context. It is not adding

up values coming from other cells, as you might expect.

Expanded tables

Before we go any further, we are going to explore the concept of expanded
tables. In DAX, each table in a data model has an expanded version that
contains all the columns of the original table, plus all the columns of tables
related to it through many-to-one and one-to-one relationships. This concept
will help you to understand the filter context, by showing you which columns
in a table will propagate their filters to a related table.

In Power BI, you can have bidirectional relationships, which will add columns to an
expanded table through a many-to-one relationship. However, they will not add

ﬂ columns to a table on the one side of the relationship. Instead, the filter propagates
through using filtering columns. Although internally they are different, expanded
columns and filtering columns act in the same way.

To 1llustrate this, let's take a simplified version of the data model that we have
been working with in this chapter, which is shown in Figure 5-10:

= Date | Product

3 Datekey 1 Manufacturer

M Day of Week ™ Sales .. 1 A Product Name

M Quarter M ProductKey
Tl Weak Bl Datekey

Bl Discount Amount

Bl Productkey
3 Return Amount
£l Sales Amount
El saleskey

B Total Cost

@ Sales Count

Figure 5-10: The simplified data model

In this case, the base table is the Sales table, and it is related to the Date table
and the Product table through many-to-one relationships. For this example,
the filter direction on the relationship between the Sales table and the Date
table has been amended so that it's bidirectional.

Figure 5-11 illustrates how the relationships in the data model, shown in
Figure 5-10, will create expanded versions of each table:

Column Name Key:
SalesKey - Original Columns
Discount Amount -\\\\\\\\\\ \\\\\ Expanded Columns
« |Return Amount - Filtering Columns
§ Sales Amount DN
Total Cost -\\\\\\\\\\
ProductKey | A
DateKey _\\\\\\\\\\\\\
§ ProductKey \\\\\\\\\\
'g Manufacturer \\\\\\\\\\\
o |Product Name \\\\\\\\\\\\
DateKey
& [Day of Week
a Quarter
Week

Figure 5-11: Expanded tables

Looking at this chart, we can tell the following about the expanded tables for
this data model:

o If we start with the Sales table, the many-to-one relationships it has with
the Product and Date tables means that its expanded table contains all of
the columns of the Sales table, plus all of the columns of the
Product table, plus all of the columns of the Date table.

e The Product table has no many-to-one relationships. Therefore, its
expanded table only contains the original columns.

o The Date table has no many-to-one relationships, so its expanded table
only contains the original columns. However, as the filter direction on

the relationship is bidirectional, filters on any of those columns will
propagate through to the Sales and Product tables.

Using this chart, we can see which expanded tables will be affected by a filter
context applied to a column. For example, if a filter were applied to the
Product Name column in the Product table, it would filter the expanded
Sales table. It would also filter the Date table, but, as this is a one-to-many
relationship, this would not be through an expanded table. The expanded
version of the Date table only contains the original columns of the Date table.
It 1s the bidirectional nature of the relationship between the Sales and Date
tables that causes it to be filtered by the Product Name column, through
filtering columns.

When you have a bidirectional relationship in a Power BI data model, DAX will,
behind the scenes, add the crossrrimer function to an expression to make the filtering

ﬂ work on the one-to-many side of the relationship. Only with a one-to-one relationship
will the tables on both sides have expanded tables, and both expanded tables would
have identical columns.

For this example, we have only used a very simple data model, so the benefit
of understanding expanded tables may not be so obvious. However, as soon as
you start working on larger and more complex data models, the importance of
this concept will become apparent. This will be especially so when we start
to look at DAX functions that allow us to change contexts, which we will look
at in the next section.

Changing context using DAX
functions

Having covered the evaluation contexts in some detail, we are now going to
look at some ways in which we can use DAX functions to change the
evaluation context. We'll start off by looking at how we can change the
behavior of an expression that is evaluated using the row context.

Context transition

You may remember that, at the start of this chapter, we looked at how an
expression we used for a measure did not work in the same way when used in
the definition of a calculated column. This is because calculated columns are
evaluated using row context, and not filter context. However, it is possible to
convert an expression from using the row context into using the filter context
by wrapping the expression with the carcorare function.

For example, we can define a column with the following expression:

|Sum of Sales Amount Column = SUM (Sales[Sales Amount])

But this will give us the same figure for each row: the total of all the values in
the Sales Amount column. Now, let's amend this expression using the carcorare
function, as follows:

|Sum of Sales Amount Column = CALCULATE (SUM (Sales[Sales Amount]))

We will see that our table now looks different. The values in our calculated

column match the value in the Sales Amount column, as can be seen in Figure
5-12:

Quantity |E| Discount Amount |E| Total Cost |E| Sales Amount E Sum of Sales Amount Column E

0

L T R . T O T O - O - T . T T . T - O . O - O = T O T O - Y - T O .|

Figure 5-12: Using context transition with a measure to give row context

By using the carcurare function, the following happens:

o We are using a feature called context transition.

£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0
£0.0

£3,2144
£3,214.4
£3,214.4
£3,214.4
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,2144
£3,214.4
£3,214.4
£3,214.4
£3,214.4
£3,2144
£3,2144

£6,390.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,390.00
£6,390.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00

£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00
£6,990.00

e When used in the definition for a calculated column, the carcurare function
converts the row context into a filter context.
o With each execution of the expression that defines our calculated column,
it now uses the filter context, adding a filter that includes the current row

of the Sales table.

e In fact, whenever you create a measure, it is evaluated internally, with a
hidden carcurare function wrapped around it.

So, for example, we could create our column using the Sum of Sales Amount
Measure we created earlier in this chapter, like this:

|Sum of Sales Amount Column = [Sum of Sales Amount Measure]

In this case, there would be no need to wrap it with the carcurars function, as
this 1s already being done by DAX behind the scenes. The measure would
take any available row context and change it to a filter context, giving us the
same results we saw in Figure 5-12.

Changing the filter context

In chapter 1, What is DAX?, we looked at the carcurare and 2 functions, and
how these could be used in combination to alter the filter context. It's worth
reiterating that the carcurare function and its table variant, carcorarerass, are the
only functions in DAX that can change a filter context.

At this point, it might be worth rereading the section in chapter 1, What is
DAX?, that covers the carcurare function. The rest of this section will look at
examples of the carcurare function being used to change the filter context.

Using the ALL function

The zrr function will return all the rows in a table and ignores the filter
context. By itself, it does not change the filter context. Only when used as a
filter with the carcorare function does it modify the filter context. You can
specify either a table name or column names for the parameters of the arr
function. If you specify a table name, then it will ignore all the filters on that
table. If you specify column names, then it will ignore only the filters on those
columns. The arr. function is not used by itself; instead, is used with other
functions such as carcurare, altering the results returned by those functions.

There is a similar function called arrexceer that works in the same way as air, but it will
ﬂ ignore filters on all of the columns, except those specified as parameters for the
function.

Let's return to the example that we used in chaprer 1, What is DAX?, where we
were calculating the percentage of sales quantity by manufacturer. To do this,
we created the following measure:

%$SalesQuantity =
DIVIDE (
// The sum of sales quantity - current filter context
SUM (Sales([Sales Quantity]),
// The sum of sales quantity - current filter context altered
// to remove filter from Manufacturer field

CALCULATE (
SUM (Sales[Sales Quantity]),
ALL ('Product' [Manufacturer])

)

In this case, we wanted to remove the filter from the Manufacturer column of
the Product table, because this was the column we were splitting the data by
on the pivot table.

Let's say we now want to add a couple of slicers to our report, to filter the
Class and Color columns and show the percentage of those filtered products
against the overall product sales. To do this, we would need to create a copy

of our %SalesQuantity measure and change it, to remove all the filters from
the filter context of the Product table.

To do this, we need to alter the second parameter of the nrvroe function. We
could include the Class and Color columns for the ~rr function to remove these
from the filter context. Alternatively, we could just specify the Product table
to remove all the filters from the filter context. As we are looking to compare
the filtered sales quantity against the sales quantity for all products, the
second option seems to be the most sensible choice.

The code for the new measure should be as follows:

$OverallSalesQuantity =
DIVIDE (
// The sum of sales quantity - current filter context
SUM (Sales[Sales Quantity]),
// The sum of sales quantity - current filter context altered
// to remove all filters from Product table

CALCULATE (
SUM (Sales[Sales Quantity]),
ALL ('Product')

)

Figure 5-13 shows the results the %OverallSalesQuantity measure, used with
a pivot table showing the sales quantity for Silver, Deluxe products compared
against the overall sales quantity:

Manufacturer Sales Quantity %SalesQuantity %0verallSalesQuantity
¥

Contoso, Ltd 159179 32.76% 043% Class Color
The Phane Company 91430 1682% 0.25% l Deluxe] Azure
Southridge Video 88,852 18.29% 0.24%] Fconomy " Black
Proseware, Inc. 41259 8.49% 0.11% D RE'QU|EI[D Blye
Adventure Works 32047 6.60% 0.09%
A Datum Comporation | 31230 642% 008% - Brown
Fabrikam, Inc. 20,860 420% 0.06% | Gold
Wide World Importers 19,099 303% 0.05%) Green
Litware, Inc. 1905 0.39% 0.01% i (rey
Total 485,881 100.00% 1.32% i Orange
"1 Pink
] Red
B Siver
L Silver Grey
.| White
L Yellow

Figure 5-13: Pivot table with measures and slicers

In later releases of DAX, there 1s a new function called removerrirers. This 18
effectively an alias for the »w. function, but it can only be used as a filter for
the carcurare function, and not as a table expression.

Using filters with CALCULATE

Now, suppose that we only need our pivot table to show quantities for silver
products. We'll start by creating a new measure for total sales quantity, but
this time, we will only include products in the Product table where the Color
column equals Silver. To do this, we can add a Boolean expression as the
filter condition of the carcurare function. In this case, the following DAX
expression will create the measure that we need:

Sum of Sales Quantity Measure - Silver =
CALCULATE (
SUM (Sales([Sales Quantity]),
'Product' [Color] = "Silver"

)

To fully understand what is going on with this expression, we need to be
aware that this measure uses compact syntax. When evaluated, the DAX
engine will automatically use an expanded version that uses the rrirer function
and the a1r function. In reality, the code for the measure would be as shown
here:

Sum of Sales Quantity Measure - Silver =
CALCULATE (
SUM (Sales[Sales Quantity]),
FILTER (
ALL ('Product' [Color]),
'Product' [Color] = "Silver"

)

The reason for this is to overwrite any existing filters on the column the with
the explicit filter being applied by the Boolean expression. This may lead to
undesired results, as can be seen in Figure 5-14:

Manufacturer Sales Quantity Sum of Sales Quantity Measure - Silver

A. Datum Corporation 2,400,635 204,317
Azure 251,937 204 317
Black 336,579 204 317
Blue 63,885 204 317
Gold 56,214 204 317
Green 260,30 204 317
Grey 202 625 204 317
Crange 370619 2094 317
Pink 343623 204 317
Silver 204 317 204 317
Silver Grey 125,535 204 317

Adventure Works 2,421,433 522,753
Black 705,745 522753
Blue 83,983 522,753
Brown 280,235 522753
Red 136,635 522753
Silver 522753 522753

Total 36,900,410 6,534,597

Figure 5-14: Getting undesired results from a measure with explicit filter

Here, the result of the expanded syntax is to remove the external filter context
generated by the matrix visual. However, there is a way to resolve this, by
using the xeeprrirers function.

We can amend our measure to use the xeerrrnrers function, like this:

Sum of Sales Quantity Measure - Silver =

CALCULATE (

SUM (Sales[Sales Quantity]),

KEEPFILTERS

(

‘Product’ [Color] = “Silver”

)

Using the amended measure in our matrix, we now get the desired results, as
can be seen in Figure 5-15:

Manufacturer

A. Datum Corporation

Azure
Black
Blue
Gold
Green
Grey
Orange
Pink
Silver

Silver Grey

Adventure Works

Black
Blue
Brown
Red

Silver
Total

Sales Quantity

2,400,635
251,937
336,579
68,885
36,214
260,301
2092625
370,619
343643
294 317
125,535
2,421,433
703,745
83983
280,235
136,635

522.733
36,900,410

Figure 5-15: Keeping filters to get the expected results from a measure

Sum of Sales Quantity Measure - Silver

294,317

294 317

522,753

322,753
6,334,597

As the name suggests, the xeserirrers function will keep any existing filters,
while applying the new filter being created by the Boolean expression. In this
example, for each row, the measure is counting the Sales Quantity for those
products where the Color is equal to the color coming from the visual and
where the color is Silver. Obviously, this means that we now only get a figure
where the color coming from the visual is equal to Silver. For all the others,

there are no products that match the filter context.

Summary

In this chapter, we took a more in-depth look at evaluation contexts, focusing
on the two different types of evaluation contexts: row context and filter
context.

First, we took a detailed look at the row context, learning how this applies
when you create a calculated column or use a function that iterates through
the rows of a table. We followed this with a detailed look at the filter
context, learning about the different sources of filters, and how these can
affect the results coming back from a DAX expression. Then, we learned
about the concept of expanded tables, and how these can help you to
understand how filters can propagate through related tables. Finally, we
looked at how you can change a context in DAX. We learned how you can
change a row context into a filter context, and how you change filter context
with the carcurare function.

In the next chapter, we will learn more about the structure of DAX syntax.
We'll also look at the different groups of functions that are available in DAX,
including aggregation functions and parent-child functions.

Section 2: Understanding DAX
Functions and Syntax

This section comprises an in-depth look at some important DAX functions,
specifically those related to tables, date and time, filtering, and statistics. In
addition to describing the functions in detail, part 2 offers a more hands-on
approach, walking you through some practical examples of the functions in
use:

Chapter 6, Progressive DAX Syntax and Functions
Chapter 7, Table Functions

Chapter 8, Date, Time, and Time Intelligence Functions
Chapter 9, Filter Functions

Chapter 10, Statistical Functions

Chapter 11, Working with DAX Patterns

Progressive DAX Syntax and
Functions

In this chapter, we'll start by taking a more in-depth look at the structure of
DAX syntax, including naming requirements. We'll learn more about
relationships, including how we deal with relationships between tables that
involve multiple columns and how to create virtual relationships.

Next, we will learn about the different groups of functions that can be found
in the DAX language. We'll then start to look at these groups in more detail,
beginning with aggregation functions. We'll round off this chapter by learning
about the functions that will help to deal with parent-child hierarchies.

This chapter is broken down into the following sections:

e Breaking down DAX syntax

Dealing with relationships

Looking at DAX functions
Introduction to aggregation functions
Functions for parent-child hierarchies

Breaking down DAX syntax

So far, we've looked at quite a few examples of DAX expressions, but we
haven't looked in detail at the structure of a typical DAX expression.

Let's set that straight by breaking down a typical DAX expression. For this

one,

we will define a measure that will give us the total sum of values in the

Sales Quantity column of the Sales table, for products in the Deluxe class:

1
2
3
4
5
6
7
8
9

Deluxe Sales Quantity

CALCULATE
(

[Sum of Sales Quantity Measure]

’
'Product' [Class]
= "Deluxe"

This DAX expression can be broken down as follows:

1

2.

. We start with the name we want to give to the measure, which in this

case is Deluxe Sales Quantity.

The equals sign operator (=) defines the start of the DAX formula. When
writing DAX expressions with Excel Power Pivot and SSAS Tabular,
the equals sign will have a colon before it (:-).

. Our measure uses the carcurare function, which takes an expression or

measure as the first argument and then modifies the filter context in
which it is evaluated, using the filters given in the following parameters.

. The opening parenthesis specifies the start of the arguments being

passed to the carcurare function.

. The measure Sum of Sales Quantity Measure calculates the total sum of

values in the Sales Quantity column of the Sales table. It is defined
using this expression:

Sum of Sales Quantity Measure = SUM (Sales[Sale Quantity])

. The comma separates the expression passed as the first argument from

the filter argument.

7. This gives the table and column name that we will use to modify the
initial filter context used to evaluate the measure or expression given in

the first argument.
8. This specifies the value that we want to filter the given column for,
which will then define the new filter context.

This DAX expression ensures that the Sum of Sales Quantity Measure only
includes values for sales of products in the Product table where the
Class column has the value of Deluxe.

A DAX expression will return either a scalar value or a table. Where a DAX
expression returns a table, it must be used with another DAX function that
will evaluate the table and return a scalar value. The only exception to this is
where an expression returns a single row table consisting of a single column,
in which case it will be treated as a scalar value.

Most DAX functions require at least one argument. These can consist of
tables, columns, expressions, or values. Where a function doesn't require any
arguments, it will still need to include an empty set of parentheses after the
function name. For example, you must type sranx () and not srawx.

Naming requirements

Within a data model, all tables must be identified using unique names. Within
each table, the names of the columns must be unique, including calculated
columns. However, the same column name can be used in multiple tables.

All object names in DAX are case-insensitive, which means that you could
use either PRODUCT or Product to refer to the same table.

Columns (including calculated columns) and measures need to belong to a
table. This can be done implicitly when you create a column or measure
within a table, or explicitly, by specifying the name of the table where a
measure should be defined.

When writing DAX functions, you should always adhere to the following
naming convention:

e A table name should be specified as it appears in the data model, for
example, Sales.

e A column name should be specified as it appears in the data model with
square brackets enclosing it. Although not strictly necessary, for good
practice, it should always be fully qualified by prefixing it with the
name of the table that contains the column, for example, 'eroduct (c1ass.

 Ifa table name contains spaces or uses a reserved keyword, it must be
enclosed within single quotes, for example, 'eroduct categories'. You will
also need to enclose it with single quotes if it contains characters
outside of the ANSI alphanumeric character set.

e Measure names must be unique within the data model.

e Measure names must always be specified in square brackets, and they
must never be prefixed by the table name.

A fully qualified column name is always required when you reference a
column in the following situations:

e A column is used as an argument to the varues, ar1, atiexceer,
and zerarenrarie functions, or any of the time intelligence functions.
e A column is used as the filter argument for the carcorare and
carcurarerasLe functions.

The following cannot be used in the names of tables, columns, or measures:

e Leading or trailing spaces; unless the spaces are enclosed by name
delimiters, brackets, or single apostrophes
e Control characters

e Any of the following characters: .,;":/*[?&%S$!+=()[]{}<>

In this section, we've learned about the DAX syntax. Now, let's proceed
toward the next section, which talks about dealing with relationships.

Dealing with relationships

In chapter 3, Building Data Models, we looked at creating physical
relationships between tables as part of our look at data modeling. For
example, in our data model, we have a physical relationship defined between
the Product and Sales tables, as shown in Figure 6-1:

| Product

Bl Color

Bl Manufacturer - Sales

Bl Product Descnphion =2 DateKey

Bl Product Name Ell Discount Amount
F Product Subcategory N... Ell Discount Quantity
| ProductKey 1 ProductKey

A ProductSubcategoryKey Fl Return Amount

Fl Status EHl Return Quantity

Fl Stock Type Ell Sales Amount

F Stop Sale Date FH Sales Quantity

El Style F Saleskey
Bl Sum of Sales Amount Co...
Bl Total Cost

Figure 6-1: The one-to-many relationship between the Product and Sales tables

A physical relationship in a data model requires that at least one side of the
relationship is linked to a column in a table that contains unique values. In the
preceding example, we've built the relationship using the ProductKey column
of the Product table linked to the ProductKey column of the Sales table,
creating a one-to-many relationship.

With this relationship, any filters applied to columns of the Product table are
propagated using a filter on the Sales table. The list of values filtered in the

ProductKey column of the Product table is transferred to a filter that is
applied to the ProductKey column of the Sales table.

However, there may be times when you may not be able to create a physical
relationship between two tables. This could be because neither of the tables
contains a column that consists of unique values, which is required by the one
side of a one-to-many relationship (although it is now possible to create
many-to-many relationships in Power BI Desktop). It may be the case that
unique values involve two or more columns in a table, whereas relationships
in a Tabular data model can only be created between tables using a single
column on each side.

One way to deal with this situation is to combine the columns required in the
relationship, using either the concarenare function or the comsrnevarues function.
The following gives the example where there is a need to create a relationship
between two tables called Dates and Sales, using the columns Year and
DayOfYear.

First, you would need to create a calculated column on the Dates table as
shown:

|Dates[SaleDate] = CONCATENATE (Dates[Year], Dates[DayOfYear])
Then, you would create another calculated column on the Sales table:

|Sales[SaleDate] = CONCATENATE (Sales([Year], Sales[DayOfYear])

You would then complete the process by creating a physical relationship
between the newly created Dates[SalesDate] and Sales[SaleDate] columns.

Dealing with multiple relationships

While it is possible to create multiple relationships between tables, only one
of them can be active at a time. A classic example of this is where you have
several dates in a data table, all of which are related to a single date in a date
table. In the example shown in Figure 6-2, we have two date fields in the
Sales table, both of which are joined to the Date table. The active relationship
shown here 1s between the Date[DateKey] and Sales[SalesDateKey] columns:

™ Dat -+ Sales
e

1 AvailableDatekey
E Discount Amount
Fl Discount Quantity
Al ProductKey

F Return Amount
Fl Return Quantity
A Sales Amount

Fl Sales Quantity

] SalesDateKey

1l SalesKey

F Sum of Sales Amount Cal...
A Total Cost

F Unit Cost

Fll CalendarDayOfWeek
F CalendarMonth

1 CalendarQuarter

A CalendarWeek

A CalendarYear

| Datekey

FHl Day of Week
E Month

E Quarter

Fl Week

F Year

Figure 6-2: Multiple relationships between tables with active relationship highlighted

Figure 6-3 shows the second relationship between the Date[DateKey] and
Sales[DispatchedDateKey] columns. This relationship is inactive, which is
indicated by the dashed line:

o Dat -+ Sales
e

E Discount Amount
F Discount Quantity
| DispatchedDateKey
A ProductKey

F Return Amount

Fl Return Quantity

1 CalendarDayOfWeek
| CalendarMonth
F CalendarQuarter
i CalendarWeek
F Calendar'ear
| Datekey

Fl Day of Week

F Menth

E Quarter

o Week

El Year

2 Sales Amount

F Sales Quantity

[SalesDatekey

] SalesKey

E Sum of Sales Amount Col...
F Total Cost

EH Unit Cost

Figure 6-3: Multiple relationships between tables with inactive relationship highlighted

To make use of the active relationship, all you need to do is use an
appropriate field from the Sales table, such as SalesKey, with a pivot table or
matrix visual and aggregate it by a field from the Date table. Figure 6-4
shows a count of sales by date:

01/01,/2007 2453
02/01/2007 2467
03/01/2007 2365
04,/01/2007 2378
05/01/2007 2287
06/01/2007 2369
Q70172007 2430
08/01/2007 2231

Total 2282482

Figure 6-4: M aking use of an active relationship to count sales by date

However, to be able to use an inactive relationship, you will need to create a
measure that uses the vsererarronsure function inside the carcurare function. In the
following example, we will create a measure that will use the inactive
relationship to calculate the number of sales dispatched on a particular date:

Orders Dispatched =

CALCULATE (
COUNT (Sales[SalesKey]),
USERELATIONSHIP ('Date' [Datekey], Sales[DispatchedDateKey])

)

If we now add this measure to our pivot table or matrix visual, it will show us
the number of sales made on a given date, along with the number of sales
dispatched, as can be seen in Figure 6-5:

Datekey Count of SalesKey Orders Dispatched

01/01,/2007 2453

02/01,/2007 2451

03/01,/2007 2365 2453
04/01/2007 2378 2461
05/01/2007 2287 2365
06/01,/2007 2369 2378
Q7/01,/2007 2430 2287
0&/01/2007 2231 2369
Total 2282482 2282482

Figure 6-5: Using a measure with an inactive relationship to show orders dispatched by date

It is important to remember that the vsererarionsare function will not work
unless an inactive relationship has already been created in the data model.

An alternative to this method of dealing with multiple relationships would be
to have multiple date tables. For example, you could have a date table called
SalesDate and another called DispatchDate, each with an active relationship
to the appropriate column in the Sales table. However, with this approach, it
would be more complex to replicate the example given in the preceding
screenshot. You would instead need to add a filter or slicer to pick a sales
date and then you could use the pivot table or matrix visual to show the
breakdown of sales made on that date, by the date of dispatch.

In the end, which method you choose to use will depend on the complexity of
your data model, along with how you are intending to present your data.

Virtual relationships

Depending on the version of Excel Power Pivot, SSAS Tabular, or Power BI
you are using, there are a couple of ways of achieving virtual relationships
between tables.

If we return to our data model, we will start by removing all of the physical
relationships between the Date table and the Sales table, as shown in Figure
6-6:

= Dat ++ Sales
e

F Discount Amount
Fl Discount Quantity
[DispatchedDatekey
A ProductKey

EH Return Amount

F Return Quantity

F Sales Amount

Fll Sales Quantity

1 SalesDatekey

] SalesKey

F Sum of Sales Amount Cal...
F Total Cost

E Unit Cost

1 CalendarDayOfWeek
F CalendarMeonth

| CalendarQuarter

| CalendarWeek

F Calendar'ear

1 Datekey

Fl Day of Week
i Menth

F Quarter

F Week

F Year

Figure 6-6: Removing relationships between tables

The first method we will look at will work with any version of the DAX
language. To replicate the results we obtained in the previous section, we

need to create two new measures. The first measure will create a virtual
relationship between the Date[DateKey] and Sales[SalesDateKey] columns:

DateKey to SalesDateKey VR =
CALCULATE (
COUNT (Sales[SalesKey]),
FILTER (
ALL (Sales[SalesDateKey]),
CONTAINS (
VALUES ('Date' [Datekey]),
'Date' [Datekey], Sales[SalesDateKey]

This measure is using the rrrrer and conrarns functions to match rows in the
Sales table with the selected date coming from the Date table, creating a
virtual relationship between the Date[DateKey] and

Sales[SalesDateKey] columns. Using the same logic, we can create a second
measure that will create a virtual relationship between the Date[DateKey] and
Sales[DispatchDateKey] columns:

DateKey to DispatchDateKey VR =
CALCULATE (
COUNT (Sales[SalesKey]),
FILTER (
ALL (Sales[DispatchedDateKey]),
CONTAINS (
VALUES ('Date' [Datekey]),
'Date' [Datekey], Sales[DispatchedDateKey]

If you are working with DAX using more recent versions of Power BI
Desktop or versions of Excel Power Pivot and Analysis Services from 2016
onward, you can make use of the mrerszcr function to achieve the same results
as in the preceding. Here is the DAX expression to create the revised measure
for the Date[DateKey] to Sales[SalesDateKey] virtual relationship:

DateKey to SalesDateKey VR2 =

CALCULATE (
COUNT (Sales[SalesKey]),
INTERSECT (

ALL (Sales[SalesDateKey]),
VALUES ('Date' [Datekey])

If we apply all three measures to a pivot table or matrix visual, we get the
result shown in Figure 6-7:

Datekey DateKey to SalesDateKey VR DateKey to DispatchDateKey VR DateKey to SalesDateKey VR2

01/01/2007 2453 2453
02/01/2007 2461 2461
03/01/2007 2365 2453 2365
04/01/2007 2378 2461 2378
05/01/2007 2287 2365 2287
06/01/2007 2369 2378 2369
07/01/2007 2490 2287 2480
08/01/2007 20 2360 2231
Total 2282482 2282482 2282482

Figure 6-7: Adding virtual relationship measures to a pivot table

As you can see, we get exactly the same result as we did with the physical
relationship between these tables.

If you are using a version of Power BI Desktop released after February 2017,
or a very recent version of Excel Power Pivot or SSAS Tabular, then there is
a third way you can create a virtual relationship, by using the rrearas function.

The mrearas function will let you take filters from the current filter context and
apply them to a table in your data model. Also, it will allow you to pass
multiple filters from the source table to the target table.

The following is the DAX expression used to revise the measure for the
Date[DateKey] to Sales[SalesDateKey] virtual relationship:

DateKey to SalesDateKey VR3 =
CALCULATE (
COUNT (Sales[SalesKey]),
TREATAS (
VALUES ('Date'[Datekey]),
Sales[SalesDateKey]

While a physical relationship will always give the best performance if you do
need to create a virtual relationship, and you are working with the latest
version of DAX, then you should consider using the rrearas function as the best
way to implement this. The rrearas function gives the best performance, while
the method using the rrirer function is the worst in terms of performance. It
does, however, have the advantage that it works across all versions of DAX.

Let's move ahead toward the next section now, which talks about DAX
functions.

Looking at DAX functions

The DAX language contains over 250 different functions. These functions are
split into two different types, depending on the result returned. They can also
be grouped depending on the functionality performed.

Function types

When evaluated, a DAX function will perform a specified action against the
data in your data model and return a result. These functions fall into one of
two categories depending on whether they return a single value or a table of
data.

Those functions that return a single value are called scalar functions and form
the majority of functions in the DAX language. They are typically used in
expressions used for creating measures and calculated columns, which require
a scalar value. These are then used as the input value to a pivot table or a
Power BI visual. The following is an example of a scalar value being used to
create a measure:

|SumOfSalesQuantity = SUM (Sales[SalesQuantity])

Here, the suv function will add together all the values in the SalesQuantity
column of the Sales table and return a single total value.

Functions that return Boolean values, such as the :r function, can also be
considered scalar as they return a single value of either rrus oOr rarse.

Functions that return a table of data are called table functions. These functions
cannot be used directly in expressions that are used to define measures or
calculated columns, but instead are used as the input for other DAX functions.
Any function that iterates over a table, such as the sumx function, requires a
table for the first argument and is an ideal candidate for using with the output
of a table function:

Very large sales amount =
SUMX (
FILTER (
Sales,
Sales[Sales Quantity] >= 1000
) 14
Sales[Sales Amount]

In the preceding example, the table function, rrrrer, 1s used to return a table
containing only those records from the Sales table where the value in the
Sales Quantity column is greater than or equal to 1,000. This is then used as
the table argument for the svux function, which iterates over the table and sums
the values in the Sales Amount column.

Another use for table functions is in the definition of a calculated table.
Unfortunately, calculated tables are not currently available with Excel Power
Pivot. The following shows an example of this:

Product Sales =
SUMMARIZE (
Sales,
'Product' [ProductKey],
"Total Sales",
SUM ('Sales'[Sales Quantity])

)

This will add a calculated table to your data model, called Product Sales,
which contains the Product Key and the Total Sales amount for that product
key.

Finally, table functions can be used with the svarvare statement to query your
data model, using tools such as Excel, SQL Server Management Studio, or
DAX Studio:

W Dattudio- 202

Boo|

“ Home help &
’ 0 5 E 0t B Undo @ A ToUpper T Comment | P Find r' m? % M [IBatch ’ N
fun Cancel Clear Quiput ﬁj[opy s Fo-;t B Tolowe W oot | § e I.oadPerI Al Qif)' Server Boee [J Connect Reﬁh

Cahe + Paste Query it Swap Delimiters = Merge XML Dets | Queres Pln Timings Intemal [, Bottom Layout Metadats
Query Edit Format Find PowerBl Traces Server Timings Connection

Qi X :

Metadzta v 1| LEVALUATE i

2FILTER (

3 Sales,

4 sales[Sales Quantity] »= 1000
) [e [;t))RDER BY [Sales Quantity] DESC
b ﬂ DateTableTemplate_bd3a
b) LocaDetelle Tf3e]
b B LocaDetelble TactT | 10055 ,

b mpmduct
b MSa\es Rests AR
SalesKey DateKey Productkey Unit Cost Unit Price Sales Quantity Return Quantity Return Amount Discount Quantity Discount Amount Total
1400042 29/04/2009 00:00:00 u% 1508 199 2880 1 1999 0 £00 E14,6E
132609 17/11/2009 00:00:00 59 200 He 2600 2 12 10 #1 £
2605896 31/12/2009 00:00:00 x5 £ 199 2600 0 £ 9 f135 H3
2485546 30/06/2009 00:00:00 1% £ 9% 2400 1 £999 0 100 £12
1561331 19/12/2009 00:00:00 a4 Hy Ry 240 1 23 12 T I 5
694737 20/12/2009 00:00:00 Bl 242 2080 1 474 10 185 £50
2944555 27/12/2009 00:00:00 500 H1209 £372 2080 1 n 4 £150 £51
1201980 06/12/2009 00:00:00 Nl 24 N 2080 1 44 3 #1150
2307415 01/12/2009 00:00:00 1% £HO 99 2080 1 £999 4 80 £105
3105962 13/12/2009 00:00:00 LUV VN R PIL 2080 0 £ 9 50 £264
675372 22/11/2009 00:00:00 L2 B8 199 2080 1 1999 § £160 £105
1961606 10/12/2009 00:00:00 5 509 199 2080 0 Hl 9 £180 £105
3115383 19/11/2009 00:00:00 I VI 51 B 2080 1 £999 b 190 £105
264129109/08/2009 00:00:00 UBP 1M £1499 2000 2 12956 0 00 £15
3181717 18/08/2009 00:00:00 PLL R VN B PIL 2000 0 £ 0 100 %
637900 09/04/2009 00:00:00 L2 BN 199 2000 2 £19.98 0 100 £10
2061102 16/04/2009 00:00:00 L5 £242 A 1520 1 fAT4 0 100 46
1075313 17/03/2009 000000 A 200 He 1520 0 Hl] 9 26 139
1643357 05/08/2009 00:00:00 PE PN S 1520 0 £ T 175 £44
2014326 20/07/2009 00:00:00 UH 0 A% 1520 1 H499 10 f150 E1¢6B
. pff! 0

Metadata Function5|DMV‘ ‘Output|ResuITs‘QJeryHistury‘

Figure 6-8: Evaluatinga DAX expression in DAX Studio

Figure 6-8 is a screenshot is from DAX Studio, showing a query designed to
return rows from the Sales table, where the Sale Quantity is greater than or
equal to 1,000, ordered in descending order of Sales Quantity.

There 1s a special case with table functions when they return a single row
with a single column - essentially a single value. In this case, DAX will
attempt to automatically convert the table returned into a scalar value when
needed. However, you should avoid using table functions in this way, as there
is always the risk that, in the future, the function will return multiple rows,
leading to an error.

Table functions cannot be used as the input to a pivot table or visual, unless
the function returns a single row with a single column, as described earlier.

Function groups

DAX includes a rich set of functions that allow you to perform aggregations,
look up values in related tables, and manipulate text and perform time-based
business intelligence. If you have used formulas in Excel, then many will
appear very similar. However, you should remember that while Excel is
based around cells, DAX works with columns and tables. By default, a DAX
function will reference a complete column or table, and you will need to add
filters to the formula if you require a particular subset of the data held in a
table.

DAX functions can be grouped depending on their functionality. The
following lists each of these groups, along with a brief explanation of what
functionality the functions in that group provide:

o Aggregation functions: These functions will aggregate the values in a
column of a table, or will apply aggregation to an expression that is
evaluated by iterating over a table. Functions in this group will return a
scalar value.

e Date and time functions: These functions are very similar to the date
and time functions found in Excel, except that they make use of the date
and time data types used in SQL Server.

e Filter functions: These functions can be used to look up values in
related tables, using the relationships that exist between tables in your
data model. They allow you to filter tables based on specific values and
manipulate filter contexts.

e Information functions: These functions look at the table, column, or
value passed in as an argument and tell you whether the value matches
the type that is expected. Most of the functions in this group will return a
value of rruz Or rarse.

e Logical functions: These functions will apply a logical operation
against the parameters passed and return a value of rrue Or rarse
depending on the results of the logical operation performed using the
parameters.

e Mathematical and trigonometric functions: DAX provides a large
number of mathematical and trigonometric functions that are very
similar to those you will find in Excel, with the exception that there are
some differences in the numeric data types used.

e Parent and child functions: Functions in this group help to manage data
presented as a parent-child hierarchy in your data model.

« Statistical functions: These functions carry out statistically-related
aggregations, such as percentiles, standard deviations, and variances.

o Text functions: Functions in this group work with tables and columns
and allow you to return part of a string, search for text within a string, or
concatenate string values. There are also functions that allow you to
format numbers and dates and times.

o Time-intelligence functions: These functions allow you to create time-
based calculations that work with calendars and dates. When used with
aggregations or calculations, it is possible to create data comparisons
across different time periods. For example, using these functions, you
can easily carry out year-on-year and year-to-date comparisons on data.
To use these functions, you will need to include date tables in your data
model.

We've gone through the function types and groups in this section. In the next
section, we will learn about the aggregation functions.

Introduction to aggregation
functions

As we have already seen earlier in this chapter, the DAX language consists
of a large number of functions that can be grouped based on the type of
functionality they provide. In this section, we are going to take our first
detailed look at these groups, starting with a look at the aggregation group of
functions.

Aggregation functions provide a way to summarize or group data and
common examples include the averace, counr, uax, mmy, and sum functions. All of
these have their equivalent x function, such as suux. Instead of working against
a column of a table, these x functions apply the aggregation to the result of an
expression that is evaluated for each row of a table.

Aggregation function reference

The following gives a list of the functions found in the aggregation function
group:

e averace: Returns the average of all of the numeric values in a column

e averacea: Returns the average of all of the values in a column including
non-numeric text

e averacex: Returns the average of an expression evaluated over a table

e cownr: Counts the rows in a table where the column has a non-blank
value and cannot operate on a Boolean data type

e cowra: Counts the rows in a table where the column has a non-blank
value and can operate with Boolean data types

e countsrank: Counts the number rows where the value in the column is
blank

e countrows: Counts the number of rows in a table

e comnrx: Counts the numbers of values resulting from an expression
evaluated over a table

e prsrrcrcount: Counts the number of distinct values in a column

e prstincrcountnosrank: Counts the number of distinct values in a column, but
ignores blank values

e mx: Returns the largest value in a column or the larger value of two
scalar expressions, ignoring logical values

e mxa: Returns the largest value in a column or the larger value of two
scalar expressions, including logical values

e waxx: Returns the largest value obtained by evaluating an expression over
every row in a table

e wmyv: Returns the smallest value in a column or the smaller value of two
scalar expressions, ignoring logical values

e wmva: Returns the smallest value in a column or the smaller value of two
scalar expressions, including logical values

o wmwx: Returns the smallest value obtained by evaluating an expression
over every row in a table

e rropuct: Returns the product of the numbers in a column

rropuctx: Returns the product of an expression evaluated over every row
in a table

som: Returns the sum of all of the numbers in a column

somx: Returns the sum of an expression evaluated over every row in a
table

The MIN, MINA, and MINX
functions

These functions can be used to create both calculated columns and measures.
When creating a calculated column, you can create aggregations that use the
current row context to sum or count values retrieved from related rows in
another table. With measures, you can create aggregations that use both filters
defined within the formula and filters imposed by slicers, along with those
coming from the column headings, and row headings of a pivot table or
matrix visual.

Let's finish off this section by looking at three related functions from this
group, starting with the vy function.

The syntax of the ntv function is as follows:
MIN (<ColumnName or ScalarValuel> [, <ScalarValue2>])

The vv function gives you the choice of finding the smallest value in the
given column or the smaller of two scalar values. If you want to find the
smaller of two scalar values, then you will need to provide a second value as
the second parameter.

The vy function will ignore the values of the Boolean data type and will
compare string values according to alphabetical order.

The syntax of the vva function is as follows:

MINA (<ColumnName>)

The vmva function is similar to the wry function but does not allow for the
comparison of two values—instead, working with a single specified column.
Unlike the wrv function, it will handle Boolean data types and will consider
true @S 1 and rarse as o.

Finally, the syntax of the urvx function is as follows:
MINX (<Table>, <Expression>)

The vrux function works by iterating over the rows of the specified table,
evaluating the given expression for every row in that table and then returning
the smallest value from the result. The table given as the first parameter can
be a table from your data model or a table returned by a table function.

Now, let's have a look at the next section, which covers the functions for
parent-child hierarchies.

Functions for parent-child
hierarchies

The last group of functions we will look at in this chapter is the one that helps
to deal with a parent-child relationship in a table. A common scenario for this
1s an employee table, where one employee record may be related to another,
for example where an employee has a manager.

Figure 6-9 shows the table we will be working with as an example. All
employees other than the CEO have a parent employee ID that references their
manager's employee ID:

EmployeelD Name Title ParentEmployeelD

100 Peter CEO

200|Frank Business Manager 100
201 Catherine Finance Manager 100
202 Ross IT Manager 100
300 S5imon Senior Administrator 200
301 Jane Administrator 200
302 Richard Finance Assistant 201
303 Julie Finance Assistant 201
304 Saad SharePoint Administrator 202
305|Tim Web Developer 202
306 Kate System Administrator 202
400(John Junior Web Developer 305

Figure 6-9: The employees table

This can be illustrated by converting it into an organization chart. As you can
see in the diagram shown in Figure 6-10, we have a hierarchy that consists of
four levels, with the CEO at the top:

Level 1

Frank Catherine
Level 2 Business Finance
Manager Manager

Ross
IT Manager

Saad

Richard Julie

|.EV€| 3 Finance Finance SharePoint Kate

Simon Jane Tim
Senior Admin Administrator Web Developer System Admin

Assistant Assistant Admin

John

Junior Web Dev

Level 4

Figure 6-10: Organization chart showing employee hierarchy

In this situation, we hit a problem with the Tabular data model. It is simply not
possible to create a circular relationship between a table and itself, in the
way we might with a relational database. Fortunately, DAX gives us a set of
functions that help to get around this problem, giving us a way to normalize
the relationship as a hierarchy.

Parent and child function reference

The following gives a list of the functions found in the parent and child
function group. Together, these five functions give us a way to normalize a
parent-child relationship in a table and represent it as a hierarchy:

rare: Returns a delimited text string that contains the identifiers of all of
the parents to the current identifier, starting with the root of a hierarchy
earacontatns: Returns rrue 1f the specified item exists in the given path
eararev: Returns the item in the specified position of the delimited list
produced by the given path function

eara1TEMREVERSE. Returns the item in the specified position of the delimited
list produced by the given path function, but counting backward from the
last item in the path

rarerencts: Returns the number of items in the delimited list produced by
the given path function

The PATH, PATHCONTAINS, and
PATHLENGTH functions

Let's start with the earu function. The syntax of the earu function is as follows:
PATH (<ID ColumnName>, <Parent ColumnName>)

This function will return all of the IDs that are related to the current row, at
various levels. In our employee example, it will return the manager of an
employee, along with the managers of those managers and so on until it
reaches the top-level manager. The list returned 1s delimited by a vertical bar.

The first parameter is the name of the column containing the unique identifier
for the current row, while the second parameter contains the name of the
column containing the unique identifier of the current row's parent. The two
columns must be of the same data type, which must be either text or integer.

Any values in the <parent colunnvame> column must exist in the <1p co1umnname>
column. If there is no value in the <parent columnname> column, then pars will
return the value in the <o columnvame> column.

With our example, we'll add a new calculated column that gives us the path
for the employee and their managers using the following expression:

|Employee Path = PATH (Employee[EmployeeID], Employee[ParentEmployeeID])

We can see the result of this in Figure 6-11:

EmployeelD [~| Name |[-| Title [~ | ParentemployeziD |- | Employee Path | ~ |

100 | Peter CEO 100

200 | Frank Busingess Manager 100 | 100|200
201 | Catherine Finance Manager 100 | 100|201
202 | Ross IT Manager 100 | 100)202
300 | Simon Senior Administrator 200 100) 200|300
301 | Jane Administrator 200 100)200|301
302 | Richard Finance Assistant 201 100)201|302
303 | Julie Finance Assistant 201 |100)201)303
304 | Saad SharePoint Administrator 202 |100)202|304
305 | Tim Web Developer 202 | 100) 202|305
306 | Kate System Administrator 202 100)202|306
400 | John Junior Web Developer 305 100)202| 305|400

Figure 6-11: The employee table with the employee hierarchy path added

If we now look at the earaconrarns function, we can see how it can be used to
check for a value in the result returned by the =ars function. The syntax for the
patucontaIns function is as follows:

PATHCONTAINS (<Path>, <Item>)

This checks the string created by the =ars function, given as the first parameter,
to see whether it contains the value given for the second parameter.

We'll create a new calculated column to check the path for the value of 202,
which is the employee ID for the IT manager. We can do this with the
following expression, which utilizes the Employee Path calculated column we
created previously:

|IT Employees = PATHCONTAINS (Employee[Employee Path], "202")

This will then return r=or for all employees that are within the IT manager's
group, and rawse for all other records.

The parareners function returns the number of items in the list returned by the
earn function. The syntax for this function is as follows:

PATHLENGTH (<Path>)

We can create another calculated column to give the path length for a given
row using the following expression. Again, we will make use of the Employee
Path calculated column that we created earlier. The result of adding this
column to our Employee table can be seen in Figure 6-12:

engoyeed [+] Name [+ T [+] ParentEnployeed -] Enployeath [+ Employes [~ Epofecpathienei -
100 Fale]

100 | Peter CED

200 | Frank Business Manager 100 100)200 False z
201 | Catherine | Finance Manager 1001001201 False Z
202 | Ross IT Manager 100 | 100|202 True Z
300 Simon Senior Administrator 200 100)200(300 False 3
301 Jane Administrator 200 100)200(301 False 3
302 | Richard Finance Assistant 201 100) 201|302 False 3
303 | Julie Finance Assistant 201 100) 201|303 False 3
304 Saad SharePaint Administrator 202 100)202|304 True 3
305 Tim Web Developer 202 100) 202|305 True 3
306 | Kate System Administrator 202 100202|306 True 3
400 John Junior Web Developer 305 100)202|305/400 True 4

Figure 6-12: The employee table with the employ ee hierarchy path length added

As we can see, this now returns the number of parents for a given row, but it
also includes the row itself. So, where an employee record doesn't have a
parent employee ID, it returns just one for the employee itself.

The PATHITEM and
PATHITEMREVERSE functions

We can start to normalize the parent-child hierarchy in our Employee table by
using the pararrem and earurrevreverse functions. These functions allow us to
fetch an ID from the specified position of the delimited string returned by earn
function. The rararrem function uses the position going from the left of the
string, while the eararrevreverse goes from the right of the string.

The syntax for the rarurren function is as follows:
PATHITEM (<Path>, <Position> [, <Type>])

The optional rype parameter allows us to specify whether we want the function
to return the value as text or as an integer. If a 1 is passed, then the function
returns an integer. If a 0 is passed or the parameter is left blank, then the
function returns the result as text. This can be important if we want to use the
returned value with the rooxurvarue function, which we will in a moment. The
syntax for the sararrevreverse function 1s the same as for the earurrev function.

Let's add another calculated column to our Employee table. This time, we'll
use the eararren function to get the top-level manager for each employee, using
the following expression:

|Level 1 Employee = PATHITEM (Employee[Employee Path], 1, 1)

By itself, this is not very useful. What would be more useful would be to use
this as a lookup to retrieve another value from the parent employee record.
For this, we can use the result of this calculated column as a parameter for the
rooxuevarue function. The syntax for this function is as follows:

LOOKUPVALUE (<Result ColumnName>, <Search ColumnName>, <Search Value> [,

<Search ColumnName>, <Search Value> [, ..]] [, <Alternate Result>])

We can use this function to revise the expression for our previous calculated
column so that it will return the name of the top-level manager:

Level 1 Employee =
LOOKUPVALUE (
Employee [Name],
Employee [EmployeelID],
PATHITEM (Employee[Employee Path], 1, 1)

We can repeat the preceding expression to create additional calculated
columns for employees on levels 2 to 4. This will then give us a table that
looks like the one in Figure 6-13:

Empoyed [+ Name [T [+] PaenEmpoyeeD || EmployeePath =] Empoges (-] EnployeePthengt [Leve 1 Employe [+ Leve 2Empoyee || Levl 3Emploge | Level 4 Emploee [+

100 Peter (£ 10 False 1 Peter

200/ Frank Business Manager 100 100)200 Fakse 2 Peter Frank

201 Catherine | Finance Manager 100 100201 Fakse 2 Peter (athering

202/ Ross [T Manager 100 1001202 True 2 Peter o33

300| Siman Senior Administratar 200/ 100]200]300 Fake 3| Peter Frank Simon
301 Jane Administrator 2001 100]200(301 Fake 3| Peter Frank Jane
302 | Richard | Finance Assistant 201 100204302 Fake 3| Peter (athering Richard
303 | ulie Finance Assistant 201 100|204 303 Fake 3| Peter (athering Jule
304 Saad SharePaint Administrator 202 100) 202304 Trug 3 Peter Ross Saad
305/ Tim Web Developer 202100202305 True 3 Peter Ross Tim
306 | Kete System Administrator 202100202306 True 3 Peter Ross Kate
400 John Junior Web Developer 305 100 202| 305400 True 4 Peter Ross Tim John

Figure 6-13: The employee table showing different levels of hierarchy in separate columns

The final step in normalizing our hierarchy is to use these calculated columns
to produce a hierarchy column on our Employee table, as shown in Figure 6-
14:

-~ B Employee

#~~ |58 Employee Hierarchy
M@ Level 1 Employee
2 Level 2 Employee
M2 Level 3 Employee
M Level 4 Employee
Employee Path
Employee Path Length
EmployeelD

H M 3 A

IT Employees
MName

2. ParentEmployeelD
Title

Figure 6-14: Using the separate hierarchy columns to produce a single hierarchy column

Although the Tabular data model does not support circular relationships
between tables, the functions in the DAX parent and child function group go a
long way toward helping you to build parent-child hierarchies into your data
model, when you have the parent and child columns available in a table.

Summary

In this chapter, we took a more in-depth look at the structure of DAX syntax,
including details around naming requirements. We learned more about
complex relationships including how to deal with relationships, between
tables that involve multiple columns and how to handle instances of tables
with multiple relationships. We also learned how to use DAX functions to
create virtual relationships.

We took our first look at the different groups of functions available in the
DAX language, including a detailed look at the aggregation group of
functions and the group of functions that help us to deal with parent and child
relationships in a table. We learned how these functions can help us to use
parent and child relationships to create a normalized parent-child hierarchy.

In the next chapter, we will continue our look at functions by learning more
about functions that return a table as a result of their evaluation.

Table Functions

In this chapter, we will be looking at the table group of DAX functions. In
particular, we'll focus on those functions that can be used to manipulate
tables. We'll list the functions in this group, along with a description of the
action that each performs.

We'll then look at a few of these functions in more detail, giving a breakdown
of the syntax, along with an explanation of how the function works in
practice. In addition, we'll also get hands-on with these functions, working
through a practical example of each, and helping you to understand how you
might use them in a real-world scenario.

The chapter is broken into the following sections:

e Introducing table functions
e Looking at table manipulation functions
o Working with table functions

Introducing table functions

In chapter 6, Progressive DAX Syntax and Functions, we looked at the two
types of functions found in the DAX language: scalar functions and table
functions. We saw that table functions are functions that, when evaluated,
return a table of data. Unlike scalar functions, which return a single value,
table functions cannot directly be used to define a measure or a calculated
column. Instead, they are used in conjunction with functions that accept a
table expression as one of their parameters.

DAX table functions can be used for the following purposes:

e Ina DAX expression that is used to define a calculated table (this
excludes Excel Power Pivot, which currently does not support
calculated tables).

e In the definition of a DAX function, where the function accepts a table
expression as a parameter.

e To query a tabular data model using Excel or SQL Server
Management Studio (SSMS), or using tools such as DAX Studio,
which can execute DAX queries using the zvarvare statement.

Perhaps the most commonly used table functions in DAX are the rrirer and
aus functions. However, we will not be looking at these in this chapter.
Instead, we will look at them in more detail when we come to filter functions
N chapter 9, Filter Functions. For this chapter, we'll focus on some other
commonly used table functions, including those functions that can be used to
manipulate tables.

Creating a DAX calculated table

We originally looked at calculated tables back in chapter 3, Building Data

Models, in the section entitled Adding a calculated table. In that section, we went
through some practical examples of adding calculated tables to the data model we
were building. When defining a calculated table, you will need to use a table
function in much the same way that you need to use scalar functions when defining a
measure or a calculated column.

In this example, we will create a calculated table in Power BI Desktop using the
apncorumns and somvartze functions. The table will consist of sales grouped by the
CalendarQuarter and CalendarYear columns.

To create a calculated table from Power BI Desktop, proceed as follows:

1. Switch to the Report or Data view.

2. From the Calculations section of the Modeling ribbon, select New Table, as
shown in Figure 7-1. This will bring up the DAX editor, where you can enter
the expression that defines the new table:

“ Home View Modeling Help

E@ |_—| ﬂ J T? Data type Home Table
E u‘-’ Data Category: Uncategorize
N MNew

Format
Manage ew New | New Sort by

Relationships Measure Column Table Parameter Column t o Auto . Default Summarization: Don
Relationships Calculations What If Sort Formatting Properties
New Table
il
Add a new table from a DAX
expression,

=

Figure 7-1: Creating a new calculated table in Power BI Desktop

3. Enter the following DAX expression into the DAX editor, and press Refurn to
create a calculated table called Sales by Quarter and Year:

Sales by Quarter and Year =
SUMMARIZE (
'Date’',
'Date' [CalendarYear],
'Date' [CalendarQuarter]

The resulting table should look like the one shown in Figure 7-2:

CalendarYear |~ | CalendarQuarter |~

2005 20051
2005 20052
2005 20053
2005 20054
2006 20061
2006 20062
2006 20063
2006 20064
2007 20071
2007 20072
2007 20073
2007 20074
2008 20081
2008 20082
2008 20083
2008 20084
2009 200591
2009 20092
2009 20093
2009 20094
2010 20101
2010 20102
2010 20103
2010 20104
2011 20111
2011 20112
2011 20113
2011 20114

Figure 7-2: The new table showing year and quarter

As you can see, the sumarrze function takes the table given in the first parameter and
groups it by the distinct combination of the columns given in the second and third
parameters. In this case, it is grouping by the CalendarYear and

CalendarQuarter columns.

Using a table expression as a table
function parameter

As 1t is, our new table is not all that useful. However, we can fix this by
adding another column to our table definition. To do that, we use the sunrrze
table expression as a parameter to the apocorvmns function.

Amend the definition for the new table using the following DAX expression:

Sales by Quarter and Year =
ADDCOLUMNS (
SUMMARIZE (
'Date’,
'Date' [CalendarYear],
'Date' [CalendarQuarter]

)
"Sales", CALCULATE (SUM (Sales[Sales Amount]))

)

The result of the revised table should look like what's shown shown in
Figure 7-3. Our table now has sales summarized by quarter and year, for the
quarters where sales were made:

CalendarYear |~ | CalendarQuarter |~ Sales -

2005 20051
2005 20052
2005 20053
2005 20054
2006 20061
2006 20062
2006 20063
2006 20064
2007 20071

2007 20072

2007 20073 | £793,881,696.342
2007 20074 £894947 792226
2008 20081 £558,470,281 4676
2008 20082 £658 806,976 1078
2008 20083 £705,371,511.818
2008 200584 £718,764,447.638
2002 20051 | £545,876,731.8135
2009 20092
2009 20093
2009 20094
2010 20101
2010 20102
2010 20103
2010 20104
2011 20111
2011 20112
2011 20113
2011 20114

Figure 7-3: The new table showing the sum of sales amount by year and quarter

The appcoromns function is another table function. It adds a column to the result
of the table passed in as the first parameter (in this case, the result of our
somzr1ze function). The second parameter is the name of the column we are
adding, and the third 1s the definition for creating it.

In this case, we are using the DAX expression sum (sales(sales amount]) tO
define the new column. However, as the apocorumws function works with a row
context and the same expression within the smzrrze function works within a
filter context, the sum function must be wrapped with the carcurare function to
force context transition.

Querying your data model using
table functions

The third use for table functions is to query data in your data model. You can
do this from within Excel Power Pivot, or through tools such as SSMS or
DAX Studio. In this section, we'll look at examples of using all three tools.

A DAX query consists of the evarvare statement, followed by a table
expression. This table expression can simply be a table name, or it can be a
more complex example, such as the one we used in the previous section. The
result of executing the =varvare statement is returned as a table.

Let's start by looking at how to query data in a data model using Excel.
Proceed as follows:

1. Open the Excel workbook that we created in cnapter 4, Working with DAX
in Power BI, Excel, and SSAS, as part of our look at creating data
models in Excel. If you don't have that available, revisit the section in cna
pter 3, Building Data Models, entitled Working with DAX in Excel
Power Pivot, to see how to create a Power Pivot data model with Excel.

2. With a blank worksheet, click on the Existing Connections icon in the Get
External Data section of the Data ribbon.

3. From the Existing Connections dialog, select the Tables tab to see a list
of tables in the data model, as shown in Figure 7-4:

Existing Connections @

Select a Connection or Table

Connections Iables

All Tables

[Blank] ~

Customer

[Blank]

Date

[Blank]

Product

[Blank]

Product Category
[Blank]

Product Subcategory
[Blank]

Promotion

[Blank]

Sales

[Blank]

Store

[Blank] ¥

I o e e Y

| Open | | Cancel

Figure 7-4: Viewing a list of available tables in Excel

4. Select the Product table from the list and click on the Open button.
5. On the Import Data dialog, select Table and click on the OK button to
load the table onto the worksheet, as shown in Figure 7-5:

Import Data @
Select how you want to view this data in your workbook.
FH @ Iable

() PivotTable Report

15 O PivotChart

[‘ Ognly Create Connection
Where do you want to put the data?

(®) Existing worksheet:

=5A51 e
O MNew worksheet

Add this data to the Data Model

Properties... = Cancel
Figure 7-5: The Import Data dialog in Excel

6. With the Product table loaded onto the worksheet, right-click on a cell in
the table and select Table and then Edit DAX... from the context menus,
as shown in Figure 7-6:

3 Cut
ERy Copy
‘4 Paste Options:

o

Paste Special...

[& Refresh
Insert 3
Delete »
Select 3

Clear Contents

8] Quick Analysis
Sort 2
Filter k
Table » Totals Row

Insert Comment Convert to Range

[
Format Cells... External Data Properties...

WP

Pick From Drop-down List... Edit Cuery...
2 Hyperlink.. Edit DAX...
Pin to Power Bl dashboard... T Parameters...

Unlink from Data Source

Alternative Text...

Figure 7-6: Opening the Edit DAX dialog from the table context menu

7. In the Edit DAX dialog that now appears, change the Command Type
from Table to DAX.

8. We can now enter a query in the Expression box. We'll start with
the svaruate saies €xpression, as shown in Figure 7-7:

Edit DAX (7 |[=]

Use the Data Analysis Expressions [DAX] Language to modify the results returned
by the connection to the Workbook Data Model,

Select DAX Command Type and enter an Expression:

Command Type: |pax

e

Expression:
EVALUATE Sales

Ok Cancel
Figure 7-7: The Edit DAX dialog

9. This will result in the Product table, which was displayed on the
worksheet, being replaced with a copy of the Sales table, as shown in
Figure 7-8:

A A B C D E F G H
1
2 2324l 40.76 719.95 199 13 1 13901 20031
3 1553 123,24 268 139 1 1 13346 20030:
4 11% 3012 635 307 1 1 19135 20030¢
3 1793 21.92 4 307 14 1 19112 20090
6 24% 209 9.99 199 12 1 13863 20030t
1 4% 12.74 24.99 306 27 1 15072 20030t
g 2503 309 9.99 306 1 1 19052 20030:
g 993 9105 198 306 1 1 15051 20080:
10 28 9153 199.9 306 28 1 15074 20031
1 1143 215.15 422 307 16 1 15099 20030¢
12 1661 23 3.5 307 1 1 19138 20031
1 19110 20031

13 1111 150,84 328 307 14

- o Rl P a a ammamm mAnan

Figure 7-8: A copy of the Sales table replaces the Product table

10. Next, repeat steps 6 to 8, but this time, we'll use a more complex query.
Enter the following DAX expression into the Expression box on the
DAX editor screen:

EVALUATE
ADDCOLUMNS (
SUMMARIZE (
'Date’',
'Date' [Calendar Year],
'Date' [Calendar Year Quarter]

"Sales", CALCULATE (SUM(Sales[Sale Amount]))
)
ORDER BY

'Date' [Calendar Year] DESC,

'Date' [Calendar Year Quarter] DESC

11. This will return a table that is a summarized version of the Date table
grouped by Calendar Year and Calendar Year Quarter, and then show the
sum of sales made during the year and quarter. This 1s very similar to the
example we looked at with Power BI Desktop in the previous section, as
can be seen in Figure 7-9:

A = C

1
2 |CY 2011 Q4-2011
3 |CY 2011 Q3-2011
4 CY 2011 Q2-2011
5 |CY 2011 Q1-2011
& |CY 2010 Q4-2010
7| CY 2010 Q3-2010
8 |CY 2010 Q2-2010
g |CY 2010 Q1-2010
10 |CY 2009 Q4-2009 815473.89
11 |CY 2009 Q3-2003 b065812.82
12 |CY 2009 Q2-2009 735651.53
13 |CY 2009 Q1-2009 455100.27
14 |CY 2003 Q4-2008 387347.1%
15 |CY 2003 Q3-2008 685003.22
16 |CY 2008 Q2-2008 726802.77
17 |CY 2008 Ql-200s 422648.42
15 |CY 2007 Q4-2007 907543.1%
19 |CY 2007 Q3-2007 783955.71
20 |CY 2007 Q2-2007 742902.65
21 |CY 2007 Q1-2007 748437.18
22 |CY 2006 Q4-2006
23 |CY 2006 Q3-2006
24 |CY 2006 Q2-2006
25 |CY 2006 Q1-2006
26 |CY 2005 Q4-2005
27 |CY 2005 Q3-2005
28 |CY 2005 Q2-2005
29 |CY 2005 Q1-2005

Figure 7-9: The sum of sales grouped by calendar year quarter and calendar year

Next, we will look at querying data using SSMS. To do this, you will need to
have SQL Server 2012 (or later) installed, with a Tabular instance of SQL
Server Analysis Service (SSAS) running. To get started, follow these steps:

1. Open SSMS and connect to the Tabular instance.

2. Right-click on the database name in Object Explorer, then click on New
Query, followed by DAX.

3. This will open a DAX editor window, as shown in Figure 7-10, where

you can enter a DAX table expression against the rvarvare statement, much
like we did with Excel:

LQ MSDAXCuerymsdx - OSHSGAMELAPTOP ContosoSales Tabuiar JOSHSGAMELAPTOP\anhe)' - Microsaft 1L Server Management Studio Cuck aunch Cir+C) Paldx
Fle Edt View CQuey Project Tools Window Help

0 m' T, @Nwﬂuey@.ﬁnﬁmm%ﬂ "9' ‘@‘p ' m}'EE" "?f‘ﬂuntusuSalesTabular v 2
Object Explorer B DA Query2.msd. MELAPTOP\ianhe)* & X v
o i
Comect ¥ ¥ VES EVALUATE T
&
g ‘b JOSHSGAMELARTOR (Microsoft Analys ! Ch 3 nnel !
g1 Databases
U ContosoSales Tabular ORDER 8Y | |
U ContosoSales Tabular anho £20 "Channel’ [channelName]
Management
¥
1% -
o Messaes 2 e
CharmelChame... ChamelChemne... ChamnelChamne... ChamelChamne... ChamnelETLLea... ChannellLoadDa... Chanmel[Lndate.
] B Calag Cafag 1 T2, T2 1.,
] 2 Orlne Orlne 1 T, 1T ..
4 I Reseler Reselir 1 A0 1T2009 14...
I] Store S 1 T8, T2 1.,
{ » | 0 Quey erecuted successhly, JOSHSGAMELAPTOP JOSHSGAMELAPTOPianho | ContosoSales Tabuler | 000001

Figure 7-10: The DAX editor in SQL Server M anagement Studio (SSM S)

Finally, we will look at querying data using a third-party tool called DAX
Studio. This is a very popular third-party client tool, produced by the DAX

experts at sorer.com. It can execute DAX queries against data models in the
following packages:

Excel Power Pivot
Power BI Desktop
SSAS Tabular

Azure Analysis Services

To help connect with an Excel Power Pivot data model, it also includes an
add-in for Excel that will need to be enabled first.

You can download a copy of DAX Studio by going to necps://daxstudio.ors and following
the instructions from there.

If we install a copy of DAX Studio and return to our Excel spreadsheet, we
can enable the Excel add-in, as follows:

1. Go to File, click on Options, and then click on Add-Ins.

2. In the Manage dialog, select COM Add-ins from the drop-down list, and
then click on Go.

3. This will bring up the COM Add-Ins dialog, shown in Figure 7-11:

[® =]

Add-ins available:

Dax Studio Excel Add-In

|:|Microsoft Drata Streamer for Excel Cancel
|:| Microsoft Power Map for Excel
Microsoft Power Pivot for Excel

Add...

Bemove

Location: file:///C:/Program Files/DAX Studio/DaxStudio.wstolvstolocal
Load Behavior: Load at Startup

Figure 7-11: The COM Add-ins dialog in Excel

4. Check the Dax Studio Excel Add-in box and click on OK.

5. With DAX Studio enabled, you will have a new icon available on the
Add-ins ribbon. Click on the icon to launch DAX Studio.

6. From the Connect dialog, accept the default option of PowerPivot
Model and click the Connect button, as shown in Figure 7-12:

http://sqlbi.com/
https://daxstudio.org/

Connect

Data Source
® PowerPivot Model Hands-On Bl with DAX (Chapter 7)axdsx
PBI / SSDT Model @

O Tabular Server

@ Advanced Opticns

Figure 7-12: Connecting DAX Studio to Excel Power Pivot

7. We then get views of metadata, functions, and Dynamic Manage ment
Views (DMVs), along with a DAX editor pane and a results window, as
can be seen in Figure 7-13. Here, we have run the same DAX expression
as we did when we used Excel to query the data. However, using DAX
Studio gives a much better user experience:

= DaxStudi - 294 - o0 X

Home Help "
> B E ¥ Cut ¥ Undo m A To Upper 'S Comment P Find @ %j‘ Ea [®] Batch 's |

Run Cancel Clear Output : opy Al fedo Fc::a.t A Tollower 7 Uncomment & Replace Load Perf Al Query Server B Cahe Conlzct R:féh
. Cache . Paste Quey * + Swap Delimiters e Merge XML Data Queries Plan Timings Internal || Bottom Layout Metadata
Query Edit Format Find Power Bl Traces Server Timings Connection
Metadata ~ 3 || 1EVALUATE a
i 2 ADDCOLUMNS(
Hands-On Bl with DAX (Ch, 3 SUMMARTZE (
i bocke N g 'gﬁi' ’[c;ﬂ endar Year],
b [Currency Q g 'Date’ [Calendar Year Quarter]
b j Customer 8 fi5alas" , CALCULATE(SUM(Sales[Sale Amount]))
! j Date lg ())RDER BY
b [Product 11 'Date' [Calendar Year] DESC,
b j Product Category ﬁ 'Date’[Calendar Year Quarter] DESC
b j Product Subcategory
3 j Promotion
3 j Sales
b j Store
1W00%w 4 y
Results I
Calendar Year Calendar Year Quarter Sales
CY 2011 Q4-201
CY 2011 Q3-201
CY 2011 Q2-201
CY 2011 Q1-201
CY 2010 Q4-2010
CY 2010 Q3-2010
CY 2010 Q2-2010
CY 2010 Q1-2010
CY 2009 04-2009 §15473.89
CY 2009 Q3-2009 665812.82
CY 2009 Q2-2009 735651.53
CY 2009 Q1-2009 455100.27
CY 2008 Q4-2008 587347.19
CY 2008 Q3-2008 685003.22 E
Metadata | Functions | DMV ‘ ‘ Output | Results | Query History

Ln 13, Cal 1 !-=Pm'.'e ') 11.02832.12 2209 28rows 00:000

Figure 7-13: DAX Studio

In order to query data in a Power BI Desktop data model, you will need to
have the Power BI file loaded in Power BI Desktop first, by doing the
following:

1. Either launch DAX Studio or click on the Connect icon in the Connection
section of the Home ribbon.

2. On the Connect dialog, select the option of PBI/ SSDT Model and click
the Connect button, as shown in Figure 7-14:

Connect

Data Source

PowerPivot Model &

® PBI / SSDT Model lall Hands-On Bl with DAX (Chapter 7)

) Tabular Server

w | Advanced Opticns

Connect || Cancel

Figure 7-14: Connecting DAX Studio to Power BI Desktop

3. As with the Excel Power Pivot data model, we get views of metadata,
functions, and DMVs, but this time for our Power Bl data model. We also
get a DAX editor pane and a results window, which we can use to query
data in our data model using DAX expressions.

Finally, you can also query data in an SSAS Tabular data model using DAX
Studio. To do this, you will need to know the name of the SSAS server where
your data model is located, proceeding as follows:

1. If it is not already loaded, launch DAX Studio. Otherwise, click on the
Connect icon in the Connection section of the Home ribbon.

2. From the Connect dialog, select the option of PBI/ SSDT Model and
click the Connect button, as shown in Figure 7-15:

Connect

Data Source

_' PowerPivot Model (3

) PBI/ SSDT Model @

® Tabular Server |_ N |

iv: Advanced Options

| Connect || Cancel |

Figure 7-15: Connecting DAX Studio to SSAS Tabular

3. DAX Studio will then connect to your SSAS Tabular data model, again

giving you views of the metadata, functions, and DMVs behind the data
model.

Using DAX Studio to query your data brings other advantages along with ease
of use. As well as outputting the results of a DAX query to the results pane,
you can output the results into a text file. You can also export data from the
tables in your data model to text files. Other advantages include being able to
load Power BI performance data to analyze performance, and the ability to
format your DAX query, following some of the rules we looked at back in cnap
ter 2, Using DAX Variables and Formatting.

Looking at table manipulation
functions

In chapter 6, Progressive DAX Syntax and Functions, we looked at the
different groups of functions that are available in the DAX language. As we
saw, individual DAX functions can be grouped depending on the
functionality they provide. However, functions from across these groups can
also belong to another type of group: table manipulation functions.

Table manipulation functions
reference

The following is a list of the DAX functions that can be used to manipulate
tables in your data model, returning the result as another table:

anncorumns: Takes the specified table and returns a table with additional
columns, as defined by a given DAX expression and with a given name.
crossgorn: Returns a table that contains the Cartesian product of rows
from all the tables given as parameters.

pataasre. Returns a table that has been defined and populated by the
parameters passed into the function.

peratrrows: 1akes the measure passed in as a parameter and returns a
table that is obtained by evaluating the Detail Rows Expression of that
measure.

prstner: Returns a table that contains the distinct values of a single
column passed in as a parameter, or the distinct combination of
columns, when a table expression is passed in as the parameter.

excerr: Takes two tables as parameters and returns the rows from the
table passed in as the first parameter that are not present in the table
passed in as the second parameter.

rrrrer: Takes a column name and returns a table of the filter values
applied directly to that column.

cenerate. For each row in the table passed as the first parameter, the
table expression passed in as the second parameter will be evaluated,
and the cross-join of the first table with these results is returned as the
result.

ceneratearr: FOTr each row in the table passed as the first parameter, the
table expression passed in as the second parameter will be evaluated,
and the cross-join of the first table with these results is returned as the
result. Includes rows where the second table expression is empty.
ceneraTesErTES: Returns a table with one column that is populated with
sequential values, starting from the values passed in as the first

parameter, to the values passed in as the second parameter. May also
increment by the value passed in as the optional third parameter.
croupsy: Returns a table summarizing the table in the first parameter,
grouped by the columns specified in the parameters.

rersect: 1akes two tables as parameters and returns the rows from the
table that is passed in as the first parameter that are present in the table
passed in as the second parameter.

naturaLTNNErIOTN: Takes two tables as parameters and joins the table
passed in as the first parameter (the left table) with the table passed in
as the second parameter (the right table) using an inner join. Returns a
table that includes all the columns from both tables and only the rows
where the values in both tables match.

narurarrerrouterJoTN: 1akes two tables as parameters and joins the table
passed in as the first parameter (the left table) with the table passed in
as the second parameter (the right table) using a left outer join. Returns
a table that includes all the columns from both tables and all the rows
from the left table with data from the right table, where the values in
both tables match.

row: Returns a single-row table with columns that are defined by DAX
expressions, passed in as parameters.

serectencorumns: 1akes the specified table and returns a table with
additional columns, as defined by a given DAX expression and with a
given name. Like the appcoromns function, but starts with an empty table.
sussTrTuTEnITHINDEX: Returns a table that 1s the semi-j oin of the two tables
passed in as parameters. The tables are joined using common columns
that are replaced with a single zero-based index column. The index is a
reference to rows of the right join table, sorted in the specified order.
somar1ze: Returns a table summarizing the table in the first parameter,
grouped by the columns specified in the parameters.

summarTzECOLUMNS: Returns a summary table that includes combinations of
values, from the columns passed in as parameters, which are given over
the set of specified groups.

roen: Returns a table giving the top number of rows, based on the number
and table passed 1n as the first and second parameters, sorted by the
expression given as the third parameter, and sorted in the order given as
the fourth parameter.

e roenskre: Like the roen function, but skips the specified number of rows
first, before retrieving the top number of rows.

e meatas: Takes the result of a table expression passed in as the first
parameter and applies them as filters to columns from an unrelated
table.

e unton: Returns a table that is the union of all the tables passed in as
parameters, where the columns match.

e varues: Returns a table that contains the distinct values of a single column
passed in as a parameter, or the combination of columns (including
duplicates), when a table expression is passed in as the parameter. Will
include an additional blank row if the table has a one-to-many
relationship where there i1s a violation of referential integrity.

All the functions in this group will enable you to manipulate tables in your
data model in some way and return the result as another table. The resulting
table can then be used as the parameter to another function, or to create a new
calculated table in your data model. Like other table functions, these table
manipulation functions can also be used to query data in your data model.

Let's finish off this section by looking at some of the table manipulation
functions in more detail, starting with the crosssorn function.

The CROSSJOIN function

The crosssory function returns a table containing the Cartesian product of all
the rows from all the tables that are passed to the function as parameters. The
resulting table will contain all the columns from the tables passed as
parameters.

The syntax of the crosssorn function is as follows:
CROSSJOIN (<Table> , <Table> [, <Table>]..)

You can pass two or more tables (or table expressions) to the crossgsory
function.

The names of the columns from the tables passed in as the parameters to the
function must all be different. The function will return an error if there are
two columns with the same name in the tables that are specified.

In the following example, we will apply the crosssorn function to the Product
Category and Currency tables. Query the data using the following DAX
expression:

EVALUATE
CROSSJOIN ('Product Category', 'Currency')

The screenshot in Figure 7-16 shows an extract of the resulting table:

ProductCategoryKey Category Code Category CurrencyKey Currency Code Currency

707 Games and Toys 20 GBP British Pound

808 Home Appliances 20 GBP British Pound

101 Audio 21 KRW South Korean Wen
202 TV and Video 21 KRW South Korean Wen
303 Computers 21 KRW South Korean Wen
404 Cameras and camcorders 21 KRW South Korean Wen
505 Cell phones 21 KRW South Korean Wen
606 Music, Movies and Audio Books 21 KRW South Korean Wen
707 Games and Toys 21 KRW South Korean Won
508 Home Appliances 21 KRwW South Korean Wen
101 Audio 22 IPY Japanese Yen

202 TV and Video 22 IPY Japanese Yen

303 Computers 22 JPY Japanese Yen

404 Cameras and camcorders 22 JPY Japanese Yen

505 Cell phones 22 JPY Japanese Yen

606 Music, Movies and Audio Books 22 IPY Japanese Yen

707 Games and Toys 22 IPY Japanese Yen

808 Home Appliances 22 IPY Japanese Yen

101 Audio 23 CNY Renminbi Yuan
202 TV and Video 23 CNY Renminbi Yuan
303 Computers 23 CNY Renminbi Yuan
404 Cameras and camcorders 23 CNY Renminbi Yuan
505 Cell phones 23 CNY Renminbi Yuan
606 Music, Movies and Audio Books 23 CNY Renminbi Yuan

Figure 7-16: Table showing the output of the crosssorn function using the Product Category and Currency tables

As you can see, the table contains all the rows from the Product Category
table, and for every row in that table, it returns all the rows from the
Currency table. In other words, the number of rows in the resulting table will
be the number of rows 1n the Product Category table, multiplied by the
number of rows in the Currency table.

The DATATABLE function

The pararzeie function provides a way to define an inline set of data values
and can be used to create static tables in your data model.

The syntax of the pararasre function is as follows:

DATATABLE (<name>, <type> [, <name>, <type>].. ,{{ <data> } [, { <data> }].. })

e The <nare> 1s the name given to the column, and must be a string and not
the result of an expression.

e The <type> 1s the data type for the column, and must be one of the
following values:

BOOLEAN
CURRENCY
DATETIME
DOUBLE
INTEGER

STRING

Finally, you provide the data that is being assigned to the column. Here, you
provide a set of rows, embedded between a pair of curly brackets. For each
row, you provide a list of values, embedded between another pair of curly
brackets. You cannot use expressions for these values; only constant values
are accepted.

To help make this clearer, let's look at the following example of the pararasre
being used to define a calculated table, which contains different age ranges:

Age Ranges =
DATATABLE (
"Age Range", STRING,
"Min Age", INTEGER,
"Max Age", INTEGER,
{
{ "Under 18", 0, 17 },
{ "18 to 24", 18, 24 1},

"25 to 34", 25, 34 1},
"35 to 44", 35, 44 },
"45 to 54", 45, 54 },
"55 to 64", 55, 64 },
"65 Plus", 65, 1000 }

e T T TN

The screenshot in Figure 7-17 shows the result of our new calculated table
after it has been created within a Power Bl report:

“ Home Modeling Help
Data type:
05 (@ E 6

Format:
Manage Mew MNew Mew Mew Sort by o .
Relationships Measure Column Table Parameter Column ' oo Auto |
Relationships Calculations What If Sort Formatting
il 1 Age Ranges =
2 DATATABLE (
3 "Age Range", STRING,

@ 4 "Min Age", INTEGER,
5 "Max Age", INTEGER,

58 6| 1
7 { "Under 18", @, 17 },
8 { "18 to 24", 1B, 24 3},
9 { "25 to 34", 25, 34 3,
1@ { "35 to 44", 35, 44 %,
11 { "45 to 54", 45, 54 7,
12 { "55 to &4", 55, 64 I,
13 { "85 Plus", &5, lead}
14 M
15)
15

Age Range |~ | MinAge |~ | Max Age |~

Under 18 0 17
18 to 24 18 24
25to 34 5 34
35to 44 5 BN
45t 54 5 54
55to 64 55 54
E5 Plus 5 1000

Figure 7-17: Calculated table created using the pararasre function

Using the rararapie function is a great way to create static tables as it makes it
easy to see the table definition, along with the data it contains. It also makes
it easier to make changes to both the definition and the contents of the table,
when required.

The EXCEPT, INTERSECT, and
UNION functions

Both the exceer and mrersecr functions require two tables to be passed in as
parameters, and both work by carrying out a comparison of values in the two
tables. The exceer function returns rows from the table passed in as the first
parameter that are not present in the table passed in as the second parameter.

The syntax of the exceer function is as follows:
EXCEPT (<Tablel> , <Table2>)

In the following example, we have two tables for — Color Table 1 and Color
Table 2 — each containing a list of colors. Table 7-1 shows the colors found
in each of the tables:

Color Table 1 Color Table 2
Black Blue
Blue Green
Brown Gold
Green Orange
Grey Red
Lime Violet
Magenta White
Orange Yellow
Pink
Purple

Red
Teal

Turquoise
White
Yellow

Table 7-1: Colors in each of the two tables

We now query our data using these tables with the exczer function using the
following DAX expression:

| EXCEPT ('Color Table 1', 'Color Table 2')

We get the following result in return:

Black
Brown
Grey

Lime
Magenta
Pink
Purple
Teal
Turquoise

The rurersecr function returns rows from the table passed in as the first
parameter that are also present in the table passed in as the second
parameter.

The syntax of the rnrerszcr function is as follows:
INTERSECT (<Tablel> , <Table2>)

We now query our data using the same tables with the rurerszcr function using
the following DAX expression:

|EXCEPT ('Color Table 1', 'Color Table 2')

We get the following result in return:

Blue
Green
Orange
Red
White
Yellow

Finally, the vwvron function will join the values from the tables passed in as
parameters into a single table. If the tables have duplicate values, then these
will also be duplicated in the resulting table. The function requires at least
two tables to be passed, but it can accept more.

The syntax of the vnion function is as follows:
UNION (<Tablel> , <Table2> [, <Table> 1..)

We now query our data using the same tables with the uwron function using the
following DAX expression:

|UNION ('"Color Table 1', 'Color Table 2")

We get the following result in return:

Black
Blue
Brown
Green
Grey
Lime
Magenta
Orange
Pink
Purple
Red
Teal
Turquoise
White
Yellow
Blue
Green
Gold
Orange
Red
Violet
White
Yellow

As you can see, this list duplicates colors that appear in both tables. We can
remove duplicates by wrapping our expression using another table
manipulation function.

The prsriner function returns a table that contains the distinct values of the
table expression being passed. We can amend the expression we used
previously, so that it becomes the table expression being passed, as follows:

|DISTINCT (UNION ('Color Table 1', 'Color Table 2'))

If we query our data again, using the new expression, we get the following
result:

Black
Blue
Brown
Green
Grey
Lime
Magenta
Orange
Pink
Purple
Red
Teal
Turquoise
White
Yellow
Gold
Violet

This time, the duplicate values are removed from the resulting table.

The GENERATESERIES function

The final table manipulation function we're going to look at in this section is
the cenerateserrzs function. The cenerareseries function will return a table with
one column, which 1s populated with sequential values, starting from the
value passed in as the first parameter to the value passed in as the second
parameter. You can also, optionally, specify an incremental value with a third
parameter.

The syntax of the ceneratesertes function 1s as follows:
GENERATESERIES (<StartValue>, <EndValue> [, <IncrementValue>])
We use the following expression to create a new calculated table:
| Generated values = GENERATESERIES (-5, 10)
We get a table that contains the following values:
|-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
We now amend the expression to include an incremental value, as follows:
| Generated values = GENERATESERIES (-5, 10, 2)
We get a table that contains the following values:
|-5, -3, -1, 1, 3, 5, 7, 9

You will notice that the sequence stops at the last value that is less than or
equal to the end value given for the sequence.

If the specified end value is less than the start value of the sequence, then the
cenerateserTES function will return an empty table. If you are using an
incremental value, then it must be a positive value.

Working with table functions

In the previous section, we focused on those table functions that can be used
to manipulate tables. Many of the other table functions fall into the date, time,
and time intelligence functions, which we will look at in chapter s, Date,
Time, and Time Intelligence Functions. The filter functions group also
contains a number of table functions, and we'll cover those 1n chapter o, Filter
Functions.

For the remainder of this chapter, we'll look at some functions that don't fall
into these groups, and where table expressions can be used as parameters.
Most of these functions fall into one of the following two categories:

e Functions that will iterate over the rows returned by the table
expression given as a parameter, evaluating a DAX expression for each
row of the table.

e Functions that will look for a specified value, in one or more columns
of the table expression given as a parameter.

The following is a list of these functions, sorted by their functions groups:

Aggregation Functions:

. averacex: BEvaluates a DAX expression for each row of a table and
calculates the average of the results.

. comnrax: BEvaluates a DAX expression for each row of a table and
counts the number of values that result.

. counrrows: Counts the number of rows in a table.

. counrx: Evaluates a DAX expression for each row of a table and
counts the number of values that result.

. maxx; Bvaluates a DAX expression for each row of a table
and returns the largest value.

. wrnx: Bvaluates a DAX expression for each row of a table
and returns the smallest value.

. rropuctx: Bvaluates a DAX expression for each row of a table

and returns the product.

soux: Evaluates a DAX expression for each row of a table
and returns the sum of the values.

Information Functions:
contatns: If there exists at least one row where all columns have
specified values, returns rrus.
contatnsrow: If there exists at least one row where all columns have
specified values, returns rrus.
rscrossrrireren; When the specified table or column is cross-filtered,
returns True.
rsevery: If the specified table or table expression is empty, returns
TRUE.
rsernteren: If there are direct filters on the specified table columns,
returns True.

Relationship Functions:
rerateprapie; Will return the related tables, filtered to include only the
related rows.

Text Functions:
concarenatex: Bvaluates a DAX expression for each row of a table,
returning the values concatenated in a single string, separated by the
specified delimiter.

The COUNTROWS function

For our first example, we'll look at one of the functions from the aggregation
group. The counrrows function simply counts the number of rows returned by a
table expression.

The syntax of the counrrons function is as follows:
COUNTROWS (<Table>)

To demonstrate this function, we can create a new measure to count the rows
of a table expression that uses the cenerareseries function, to create a table
containing rows with the values 1 to 100.

We use the following DAX expression to create our new measure:

Count Rows Measure =
COUNTROWS (
GENERATESERIES (
1/
100

)

We should get the result shown in Figure 7-18 when we place the measure on
a Power Bl report using a card visual:

Home View Modeling Help
et == : D e (] =
O] 4 e A 4—

Copy

Paste i Get Recent Enter Edit Refresh Mew Mew Ask A Buttons
Format Painter pata~ Sources~ Data Queries ~ Page~ Visual Question =
Clipboard Bxternal data Insert
nall

100

Figure 7-18: The result of the Count Rows M easure output to a card visual in Power BI Desktop

A more likely scenario for using the countrows function is to count the number
of rows returned by a table expression that uses one of the filter functions
we'll be looking at in chapter o, Filter Functions.

The PRODUCTX function

The eropucrx function is another function from the aggregation group. It returns
the product of an expression that is evaluated for each row of the table
expression passed as the first parameter.

The syntax of the eropucrx function is as follows:
PRODUCTX (<Table>, <Expression>)

For this example, we'll use the pararaeie function to create two new tables.
One will contain the current salary of some employees, while the second will
contain details of salary increases for the next 3 years. Proceed as follows:

1. To create the first table, we'll use the following DAX expression:

Employee Salary =
DATATABLE (

"EmployeeID", INTEGER,

"Salary", CURRENCY,

{
"100", "150000" 1},
"200"™, "80000" 1},
"201", "55000" 1},
"202"™, "55000" 1},
"300"™, "45000" 1},
"301"™, "40000" 1},
"302"™, "40000" 1},
"303"™, "40000" 1},
"304", "50000" },
"305", "50000" 1},
"306", "50000" 1},
"400"™, "25000" }

P T e e T T T T SN,

2. Next, we'll create a table detailing the annual salary increases for the
next 3 years using the following DAX expression:

Salary Increase =
DATATABLE (
"Year", STRING,
"Increase", DOUBLE,
{

{ 11201911, "1.03" },
{ "2020", "1.02" }’
{ "2021", "1.02" }

)

3. Now, we can use the eropucrx function to create a calculated column on
the Employee Salary table that we created with the first expression. Use
the following DAX expression to create this:

Increased Salary =
[Salary]
* PRODUCTX (
'Salary Increase',
[Increase]

)

The resulting Employee Salary table should look like the one shown in
Figure 7-19:

EmployeelD - Salary |~ | Increased Salary |~

100 £150,000 160741.8
200 £80,000 85728.56
201 £55,000 58938.66
202 £55,000 58938.66
300 £45,000 4822254
301 £40,000 42884.48
302 £40,000 42884.48
303 £40,000 42884.48
304 £50,000 53580.6
305 £50,000 53580.6
306 £50,000 53580.6
400 £25,000 26790.3

Figure 7-19: The result of the Employee Salary table

In this case, what the eropucrx function is doing is multiplying the values in the
Increase column of the Salary Increase table. This is then used in the
definition of the Increased Salary column of the Employee Salary table by
multiplying the result of the rropucrx function by the value of the Salary
column. So, for the first row, the value of the Increased Salary column is
calculated as follows:

£150,000 * (1.03 *1.02 * 1.02) = £160,741.80

As you can see, the sropucrx function is a great way of calculating future
values.

The CONTAINS function

The contans function will return rrue 1f there 1s a row where all of the
specified columns contain the specified values.

The syntax of the conratns function is as follows:
CONTAINS (<Table>, <ColumnName>, <Value> [, <ColumnName>, <Value> [, ..]])

In this example, we'll use the nrersecr function to find the list of colors that
appear in our two-color tables. We'll then use the result of this expression
with the contatns function to create a measure that checks whether this list
contains the color Red, as follows:

Color Check =
CONTAINS (
INTERSECT (
'Color Table 1°',
'Color Table 2'
)I
[Color],
"Red"
)

In this case, the measure would return rzue as both tables contain the color
Red. However, if the value was changed to Pink, the measure would return
rarse, as the color Pink only appears in Color Table 1.

The CONCATENATEX function

For our final example in this chapter, we're going to look at the concarenarex
function. This function takes a table expression for the first parameter. It then
iterates over the rows in this table and evaluates the expression passed in
with the second parameter. The results of the expressions are then
concatenated using the delimiter specified with the third parameter.

The syntax of the concarenatex function is as follows:
CONCATENATEX (<Table>, <Expression> [, <Delimiter>])

In this example, we'll use the mrersecr function to find the list of colors that
appear in our two color tables. We'll then use the result of this expression
with the concarenarex function to create a new measure that we can use to
display these colors as a comma-separated list.

We can create the new measure using the following DAX expression:

Colors =
CONCATENATEX (
INTERSECT (
'Color Table 1°',
'Color Table 2'
) s
[Color],
won

)

We can then use that measure with a card visual in Power BI Desktop to
display the result, which should look like the one shown in Figure 7-20:

Home Wiew Modeling Help
Cut D D D ['1 D Al I | |) Text box
Q) A g a2 L ¥ [.diimage | |

Copy
Paste . Get Recent Enter Edit Refresh MNew Mew Ask A Buttons From From
Format Painter pata~ Sources+ Data Queries~ Page~ Visual Question - CEShEF'EV Marketplace File
Clipboard External data Insert Custom visuals
ol

Blue,Green,Orange,Red, White,Yellow

Figure 7-20: The result of the colors measure output to a card visual in Power BI Desktop

The concarenatex function is a great way of displaying the result of a table
expression. For example, you could use it in conjunction with the varues table
function to display the current values of a filter or slicer as a dynamic title on

a report.

Summary

In this chapter, we looked at the DAX table functions. We looked at how they
can be used to create calculated tables and how they can be used as
parameters to functions that require a table expression for a parameter. We
learned how to use table functions with Excel, SSMS, and DAX Studio to
query data in our data model.

We then moved on to look at those table functions that are classed as table
manipulation functions, and how they can be used to manipulate data in our
data model. We looked in detail at the crosssory, pararasre, Excepr, INTERSECT,
UNION, and cenerateseries functions.

Finally, we looked at some examples of working with table functions. In
particular, we looked at using table functions as parameters to other functions
and we worked through some examples of using the counrrows, propucTx, contatys,
and concarenatex functions.

In the next chapter, we will continue our look at functions by learning about
the date, time, and time intelligence functions that are available in the DAX

language.

Date, Time, and Time Intelligence
Functions

We'll start this chapter by looking at the group of DAX functions that deal
with date and time. Starting with a brief description of each of the functions
currently available in this group, we'll then turn our attention to some hands-
on examples.

In the second half of this chapter, we'll be working with the time intelligence
group of functions. Again, we'll start with a list of the functions in this group,
before moving on to look at how these functions work with a date table in
your data model to bring you new insights. We'll also work through some
examples of using these functions to aggregate and compare data over
different time periods.

This chapter will cover the following topics:

Introduction to date and time functions
Working with date and time functions
Looking at time intelligence functions
Making your data more intelligent over time

Introduction to date and time
functions

The DAX language contains a number of functions relating to date and time,
including a couple of functions that allow you to automatically create simple
date tables. Many of the remaining date and time functions give you the
ability to expand these automatically generated tables with additional
columns of date-related information. If you've worked with date and time
functions in Excel, then these are very similar, with the exception that DAX
date and time functions work with the datetime data type.

Almost all the data models you'll work with will involve some form of
calculation relating to date and time, and they'll usually contain at least one
date table. In fact, if you are working with a data model in Power BI Desktop
and you don't have your own date table, then, by default, it will automatically
create a hidden date table for every date field in the data model.

Time tables are less commonly found in data models. Where they are, they will have
a similar structure, with one row for every unit of time. That unit of time will depend
on the granularity of your time table, be it hour, minute, second, or lower. Generally,
you will have rows covering the time between midnight and 23:59:59.

Whenever you have dates in a data model that you want use for analysis, you
will need to have a related date table. Where you have multiple dates that
you want to analyze, you have the following choices:

e Use a single date table where you have a single active relationship and
multiple inactive relationships. You will then need to use the
vsererarTonsuTe function to indicate which relationship to use.

o Use multiple date tables, each related to its own date column.

In chapter 3, Building Data Models, in the section titled It's a date, we
looked at building a custom date table using some of these date and time
functions. In that example, we started by building a simple table with the

carennar function, and then expanded it by adding numerous calculated
columns. In this chapter, we're going to build a similar date table. However,
this time, we'll do it using a single DAX expression and use the appcormmns
function to add the additional date-related columns.

Date and time function reference

The following list of DAX functions are found in the date and time function
group, along with a brief description of the functionality provided by each:

carennar: Returns a table that contains a single column called 'Date’,
which holds a set of contiguous dates. These dates range from a
specified start date to a specified end date, inclusively.

carmnnaravrTo: Returns a table that contains a single column called 'Date’,
which holds a set of contiguous dates. The range for these dates is
calculated automatically based on the earliest date found in your data
model through to the latest.

pate: Returns the specified date in datetime format.

parentrr: Returns the number of units specified as the interval between
two specified dates.

marevarve: Converts a date specified in text format into a date in datetime
format.

pav: Returns an integer number between 1 and 31, representing the day of
the month of the specified date.

epate; Returns a date in datetime format, which is the date that is the
specified number of months before or after the given start date.

rovonts: Returns a date in datetime format, which is the last day of the
month for the specified number of months, before or after the given start
date.

sour: Returns an integer number between 0 and 23, representing the hour
of the specified date/time.

wrvure: Returns an integer number between 0 and 59, representing the
minute of the specified date/time.

vonte: Returns an integer number between 1 and 12, representing the
month of the specified date.

vow: Returns the current date and time in datetime format.

seconn: Returns an integer number between 0 and 59, representing the
second of the specified date/time.

rrve: Converts the specified hours, minutes, and seconds, given as
numbers, to a time in datetime format.

o rmuevarue: Converts a specified time given in text format into a time in
datetime format.

e rooav: Returns the current date in datetime format.

e urcvow: Returns the current Coordinated Universal Time (UTC) date
and time in datetime format.

e urcropay: Returns the current UTC date in datetime format.

e weekpay: Returns an integer number between 1 and 7, representing the day
of the week of the specified date. Gives you the option to specify
whether to use Sunday or Monday as the first day of the week.

e weexnov: Returns an integer number representing the week number of the
year for the specified date. Gives you the option to specify whether to
use Sunday or Monday as the first day of the week.

e vear: Returns a four-digit integer number between 1900 and 9999
representing the year for the specified date.

e vearrrac: Returns the fraction of a year based on whole days between a
specified start and end date.

Now, let's have a look at the date and time functions in the next section.

Working with date and time
functions

In this section, we're going to look at some of the date and time functions in
more detail by using them with some hands-on examples. We'll start by
looking at a DAX expression to build a date table.

As we'll see in the Looking at time intelligence functions section of this chapter on
time intelligence functions, we need at least one table in our data model that
contains all the days for the years being analyzed for those functions to work
correctly.

Unlike the date table we built in chapter 3, Building Data Models where we
built the table in sections using calculated columns, we'll build this date table
with a single DAX expression.

Building a date table

For this example, we will be building a date table using Power BI Desktop.
We'll start by creating a calculated table. From Power BI Desktop, do the
following;

1. Switch to the Report or Data view.

2. From the Calculations section of the Modeling ribbon, select Create
New Table. This will bring up the DAX editor where we can name the
table and add the DAX expression to define it. In the DAX editor, enter
the following expression to create the new date table:

Date Table =
VAR StartYear = 2005
VAR EndYear = 2020
VAR CalendarDates =
CALENDAR (DATE (StartYear, 1, 1), DATE (EndYear, 12, 31))
RETURN
ADDCOLUMNS (
CalendarDates,
"Year", YEAR ([Date]),
"Quarter Name", "Q" & TRUNC ((MONTH ([Date]) - 1) /
3) + 1,
"Quarter Number", TRUNC ((MONTH ([Date]l) - 1) / 3) +
1/
"Month Name", FORMAT ([Date], "mmmm"),
"Month Number", MONTH ([Date]),
"Week Name", "Week " & FORMAT (WEEKNUM ([Date]), "0OO"
)I
"Week Number", WEEKNUM ([Date]),
"Day Name", FORMAT ([Date], "dddd"),
"Day Number", WEEKDAY ([Date])
)

3. This will create a new date table with a date column called Date. Check
that this column 1s correctly formatted as a date.

4. Finally, mark the new table as a date table. To do this, right-click on the
new date table in the Fields pane and select Mark as date table. This
will bring up the Make as date table dialog. In the drop-
down Date column, select Date and click OK.

In this example, we have used the carenoar function with a start and end date.
We could have just as easily used the carenparavro function to automatically
detect the earliest and latest dates in our data model. However, the carenoar
function gives us greater control over the date range of the table. Let's look at
these two functions in more detail.

The CALENDAR and
CALENDARAUTO functions

The carenar function will return a table that contains a single column called
Date, which holds a set of contiguous dates. These dates range from a
specified start date to a specified end date, inclusively.

The syntax of the carenoar function is as follows:
CALENDAR (<StartDate> , <EndDate>)

To ensure that the DAX time intelligence functions work correctly, you
should always include an entire year in a date table.

In the expression we used to create our date table in the previous example,
we effectively used the following DAX to return a table with dates between
January 1, 2005 and December 31, 2020:

CALENDAR (
DATE (2005, 1, 1),
DATE (2020, 12, 31)

e The carennaravro function also returns a table with a set of contiguous
dates and a single column called Date. However, the start and end dates
for the date range are calculated automatically based on the data in your
data model.

e The syntax of the carenparavro function is carenparavto (
[<FiscalYearEndMonth>]).

e The function takes an optional parameter, which is an integer between 1
to 12 that represents the end month of the fiscal year. By default, the
fiscal year ends in month 12 (December).

e While the catenoarauro function can be useful for populating a date table,
it has a major drawback. If your data model contains dates that you are

not using for analysis, such as date of birth, then it will also pick these
up. This will potentially give a much wider date range than you want.

The DATEDIFF function

The parep1rr function returns the amount of time between the specified start and
end dates, with a specified time interval of seconds, minutes, hours, days,
weeks, months, quarters, or years.

The syntax of the parenrrr function is as follows:
DATEDIFF (<Datel>, <Date2>, <Interval>)

The <pate1> and <pate2> parameters are dates in datetime format that represent
the two dates that we want to measure the interval between. The interval is
specified with the third parameter.

Let's create two measures to illustrate the function being used with day and
week as the intervals by using the following DAX expressions:

DATEDIFF Day Example =

DATEDIFF (
DATE (2019, 1, 1),
DATE (2020, 12, 31),
DAY

)

DATEDIFF Week Example =
DATEDIFF (
DATE (2019, 1, 1),
DATE (2020, 12, 31),
WEEK

)

If we now display these measures using a couple of card visuals with Power
BI, we get the results shown in Figure 8-1:

m Home View Modeling Help
Cut D D D F D cAal I | | = Text box
) P4 o [a — [image I |

Copy
Paste . Get Recent Enter Edit Refresh Mew MNew AskA Buttons From From
Format Painter pata~ Sources~ Data Queries~ Page™ Visual Question =+ I Shapes~™ parketplace File
Clipboard External data Insert Custom visuals
ol

730 104

Figure 8-1: Using the pareprrr function with day and week intervals

In this example, for each of the measures, the end date is after the start date, so
the difference is returned as a positive figure. However, in instances where
the start date 1s after the end date, then the difference would be returned as a
negative number.

The EDATE function

The evate function returns the date that is the specified number of months
before or after the given start date.

The syntax of the epate function is as follows:
EDATE (<StartDate>, <Months>)

The first parameter is a date in datetime or text format that represents the
start date. The second parameter represents the number of months before or
after the start date to return.

To illustrate this, create a new measure using the following DAX expression:

EDATE Example =

EDATE (
DATE (2019, 1, 31),
1

)

This then gives the result shown in Figure 8-2:

“ Home View Maodeling Help
AD Cut D [L_I‘_ D EZ |:|_I g

Copy
Paste) Get Recent Enter Edit Refresh Mew Mew
Format Painter pata~ Sources~ Data Queries~ Page = Visual

Clipboard External data

8 28/02/2019
00:00:00

Figure 8-2: Using the epate function

In cases like our example, where the day of the month of the specified start
date is past the last day of the corresponding month, then the last day of the
corresponding month is returned.

The EOMONTH function

The rovonts function is like the roare function except that it will return the last
date of the month where the specified number of months is before or after the
given start date.

The syntax of the zovonts function is as follows:
EOMONTH (<StartDate>, <Months>)

The first parameter is a date in datetime or text format that represents the
start date. The second parameter represents the number of months before or
after the start date to return.

Again, let's illustrate this by creating a new measure using the following
DAX expression:

EOMONTH Example =
EOMONTH (
DATE (2019, 12, 15),
-2
)

This will then give the result shown in Figure 8-3:

“ Home View Modeling Help
Cut [?1 [?1_ [:j E;E [jj L;]

Copy
Paste) Get Recent Enter Edit Refresh Mew New
Format Painter pata~ Sources~ Data Queries ~ Page = Visual

Clipboard External data

2
a2 31/10/2019
00:00:00

Figure 8-3: Using the romonts function

Even though both the epare and =ovonts functions return a date, they return it in
datetime format. If you only want the date, without the time, then you should
wrap the epare Or zovonts function with the rorvar function, and format the date
as required.

The YEARFRAC function

The last function in the date and time group that we're going look at is the
vearrrac function. This function returns the number of days between the
specified start and end dates as a year fraction.

The syntax of the vearrrac function is as follows:
YEARFRAC (<StartDate>, <EndDate> [, <Basis>])

The third optional parameter is an integer number between 0 and 4 and it
allows you to specify the type of day count basis to be used. The following
gives the meaning for each value:

0 — US (NASD) 30/360
1 — Actual/actual

2 — Actual/360

3 — Actual/365

4 — European 30/360

If the third parameter is omitted, the default of basis 0 will be used. In most
cases, 1f you are not sure which basis to use, you should use basis 1.

Where possible, you should use four-digit years to avoid unexpected results.
If the year is omitted, then the current year will be used.

Let's create an example measure using the following DAX expression:

YEARFRAC Example =

YEARFRAC (
DATE (1968, 4, 1),
DATE (2019, 10, 1),
1

)

This will then give the result shown in Figure 8-4:

Home View Modeling Help
v o B B L
Q) i g

Copy
Paste) Get Recent Enter Edit Refresh Mew New
Format Painter pata~ Sources~ Data Queries~ Page = Visual

Clipboard External data

= 51.50

Figure 8-4: Using the vearrrac function

The vearrrac function 1s useful for financial and HR-related calculations,
where the calculation requires the portion of a whole year. In the previous
example, we created the measure using set dates, but these could just as
easily be dates coming from tables in our data model.

We worked with the date and time functions in this section. In the next
section, we'll move on toward the time intelligence functions.

Looking at time intelligence
functions

Now that we've spent some time working with date and time functions in
more detail, it's time to move on to looking at the time intelligence group of
DAX functions.

The DAX language contains a number of functions related to time
intelligence. This set of functions will enable you to get insight into your data
by making it easy to perform analysis over different time periods. For
example, you can get figures such as months, quarters, and year to date, or the
same period last year. Each of these functions belongs to one of three
categories:

e Functions that return a single date
e Functions that return a table of dates
 Functions that evaluate expressions over a period of time

In order to be able to use any of these time intelligence functions, your data
model must contain at least one date table. This date table will also need to
conform to the following rules:

It must start on January 1 of the year of the earliest date being analyzed.
It must end on December 31 of the year of the latest date being analyzed.
It will need one record, and only one record, for each date.

The dates must be contiguous. There can be no missing dates between
the start and end dates for the range of dates covered by the date table.

As we have already seen, if you are using Power BI Desktop, then you have
two options available. You can either work with the hidden data tables that
are automatically created by default when you have dates in your data model,
or you can create your own custom date table. If you create a custom table,
then any hidden date tables will be removed from your data model.

It is recommended that you always create your own custom date table when working
with time intelligence functions as you will have greater control over it.

As you will see when we come to the examples of using these functions, we
will use some of them with the carcurare function. As such, you will need a
good understanding of how the carcurare function works to be able to
understand how a particular time intelligence function works. If you need a
reminder of how the carcurare function works, check out the section entitled
The CALCULATE function in chapter 1, What is DAX?.

Time intelligence function reference

The following is a list of the DAX functions found in the time intelligence
group of functions, along with a brief description of the functionality
provided by each:

CLOSINGBALANCEMONTH, CLOSINGBALANCEQUARTER, and crostneearancevear evaluate a
given expression at the last date of the month/quarter/year for the
specified dates in the current context. They also take an optional
argument for a filter expression to apply to the current context. The
crostneearanceyear function also allows you to specify a literal string with
a date that defines the year-end date.

pateapp: Returns a table containing a column of dates, shifted either
forward or backward in time by the specified number of intervals from
the dates in the current context. Intervals can be specified as day, month,
quarter, or year.

paresseTeEn. Returns a table containing a column of dates that begin with
the specified start date and end with the specified end date.

pates1neErTOD: Returns a table containing a column of dates that begin with
the specified start date and continues for the specified number of
intervals. Intervals can be specified as day, month, quarter, or year.
paTesuTD, paTEsOTD, anNd paresvro: Returns a table containing a column of the
dates for the month/quarter/year to date in the current context.

ENDOFMONTH, ENDOFQUARTER, and exoorvear: Returns the last date of the
month/quarter/year in the current context for the specified column of
dates.

rirstoate. Returns the first date in the current context for the specified
column of dates.

rirsTroneLank: Returns the first value in the column, filtered by the current
context, where the expression is not blank.

rastoate. Returns the last date in the current context for the specified
column of dates.

rastvonerank: Returns the last value in the column, filtered by the current
context, where the expression is not blank.

® NEXTDAY, NEXTMONTH, NEXTQUARTER, and wexrvear: Returns a table containing a
column of all dates from the next day/month/quarter/year, based on the
first date specified in the date column in the current context.

® OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER, and opentncearancevear: Evaluates
the expression at the first date of the month/quarter/year in the current
context.

e mararieLpEriob: Returns a table that contains a column of dates that
represents a period parallel to the dates in the specified date column, in
the current context, with the dates shifted by a specified number of
intervals either forward in time or back in time. Intervals can be
specified as month, quarter, or year.

® PREVIOUSDAY, PREVIOUSMONTH, PREVIOUSQUARTER, and ereviousvear: Returns a table
that contains a column of all dates from the previous
day/month/quarter/year, based on the first date in the date column in the
current context.

e saveperTODIASTYEAR. Returns a table that contains a column of dates shifted
one year back in time from the dates in the specified date column in the
current context.

e sTARTOFMONTH, sTARTOFQUARTER, aNd starrorvear: Returns the first date of the
month/quarter/year in the current context for the specified column of
dates.

e roratmp, totarorp, and rorarvrn: Evaluates the value of the expression for
the dates in the month/quarter/year to date in the current context.

All the functions in this group take dates as one of their parameters. The
dates passed to these functions can be any of the following;

e A reference to a date/time column

» A table expression that returns a single column of date/time values

e A Boolean expression that defines a single-column table of date/time
values

Making your data more intelligent
over time

In this section, we're going to look at some of the time intelligence functions
in more detail by using them with some hands-on examples. As we mentioned
in the previous section, you must have at least one date table in your data
model for the functions in this group to work. If you don't have a date table in
your data model already, make sure you add one, as outlined in the previous
section on the date and time functions. This date table will also need to have
a relationship with the SalesDateKey column in the Sales table.

DAX functions that return a single
date

The first category of time intelligence functions that we are going to look at
are those that return a single value. In reality, they return a single row of a
single column table, so they can be used with any function that requires a
table as a parameter.

The functions in this category are as follows:

e rrrsoaTE and tasToaTE

o rrrsTNonBLANK AN LASTNONBLANK
o srarTorvonTH and enpormMonTH

® STARTOFQUARTER and ENDOFQUARTER

® STARTOFYEAR and ENDOFYEAR

Let's look at the first of these functions to help us understand how the
functions in this category work.

The syntax of the rrrstoate function is as follows:
FIRSTDATE (<Dates>)
The syntax of the 1astoare functions is as follows:
LASTDATE (<Dates>)

These functions have only one parameter, which is either the name of a
column containing dates or a one-column table containing dates. From these
dates, 1t will then return the first date in the current context.

The rrrstvonerank and rasoveranx functions work slightly differently to the
others in this group, in that they don't just work with date columns, but also
work with columns of any data type.

The syntax of the rrrstvoneranx function is as follows:
FIRSTNONBLANK (<ColumnName>, <Expression>)

The syntax of the 1astonsranx function is as follows:
LASTNONBLANK (<ColumnName>, <Expression>)

For the first parameter, we give it the name of the column that we want to
return the value from. For the second parameter, we need to supply an
expression that is to be evaluated for each value of the column passed in the
first parameter for non-blank values. Let's illustrate this with an example:

1. Create a new measure using the following DAX expression:

First Sales Date =
FIRSTNONBLANK (
'Date Table' [Date],
CALCULATE (
SUM (Sales[Sales Amount])
)

)

This will give the first date where the sales amount was not blank. On
its own, this is not very useful. However, if we add this to a table
visual, along with the product name, we get the date that each product
achieved its first sale. We can see this in Figure 8-5:

Product Name

I

Datum Compact Digital Camera M200 Grey

First Sales Date

A, Datum Advanced Digital Carmera M300 Azure 31/03,/2007
A. Datum Advanced Digital Camera M300 Black 01/0/2007
A, Datum Advanced Digital Camera M300 Green 01/0/2007
A, Datum Advanced Digital Camera M300 Grey 01/01/2007
A, Datum Advanced Digital Camera M300 Orange 01/0/2007
A, Datum Advanced Digital Camera M300 Pink 01/01/2007
A, Datum Advanced Digital Camera M300 Silver 01/01/2007
A, Datum All in One Digital Camera M200 Azure 04,01,2009
A, Datum All in One Digital Camera M200 Black 01/0/2007
A, Datum All in One Digital Camera M200 Green 01/01/2007
A, Datum All in One Digital Camera M200 Grey 01/01/2007
A, Datum All in One Digital Camera M200 Crange 31/03/2007
A, Datum All in One Digital Camera M200 Pink 01/01/2007
A, Datum All in One Digital Camera M200 Silver 01/01/2007
A, Datum Bridge Digital Camera M300 Azure 01/01/2007
A, Datum Bridge Digital Camera M300 Black 28/02/2007
A, Datum Bridge Digital Camera M300 Green 01/01/2007
A, Datum Bridge Digital Camera M300 Grey 01/01/2007
A, Datum Bridge Digital Camera M300 Crange 01/0/2007
A, Datum Bridge Digital Camera M300 Pink 01/01/2007
A, Datum Bridge Digital Camera M300 Silver 30/09/2008
A, Datum Compact Digital Camera M200 Azure 01/01/2007
A, Datum Compact Digital Camera M200 Green 01/0/2007

01/01/2007

Figure 8-5: Showing the first date of sale for each product

2. We can expand on this to find the total sales amount for that first day's
sales by using the same expression as a filter with the carcurare function.
Create a new measure using the following expression:

First Sales Date Sales Amount =
CALCULATE (
SUM (sales[sales amount]),
FIRSTNONBLANK (
'Date Table' [Date],
CALCULATE (
SUM (Sales[Sales Amount])

Here, we are using the fact that rrrstvonerank returns a table, which can
then be used as a filter for the carcorare function.

The last functions we're going to look at in this category are the
startoryear and envorvear functions. These functions return the date of
the start of the year and the date of the end of the year, respectively.

The syntax of the srarrorvear function is as follows:
STARTOFYEAR (<Dates> [, <YearEndDate>])

For the first parameter, you need to supply either the name of a
column containing dates or a one-column table containing dates. The
second, optional, parameter allows you to specify the end date of the
year, which may be different to the calendar year if you're working
with financial years, for example.

client where a workbook was created, and the year part of the date will be ignored.

ﬂ The vearsnapate parameter is a string literal of a date. This will be in the locale of the
It is advisable to use the format day/month to ensure the correct interpretation.

3. For this example, create a measure using the following expression:

Financial Year Start Date =

STARTOFYEAR (
Sales[SalesDateKey],
"03/31"

In this example, we have included the optional parameter to specify an
alternative year-end date of March 31 for our financial year. When combined
with the date column of our date table in a table visual, we get the start date
of the financial year for each quarter, as can be seen in Figure 8-6:

Year Cuartsr Financial Year Start Date
2007 Qtr1 01/01/2007
2007 Qtr2 01/04/2007
2007 Qtr 3 01/04/2007
2007 Qtr4
2008 Qtr1
2008 Qtr2
2008 Qtr3
2008 Qtr4
2009 Qtr1
2009 Qtr2
2009 Qtr3 F20
2009 Qtr4 01/04/2009

Figure 8-6: Getting the start date of the financial year

The financial year start date for Q1 2007 is January 1, 2007 as this is the first
date that has sales in the Sales table.

The STARTOFMONTH, ENDOFMONTH, STARTOFQUARTER, and exporguarTer functions are very
similar to the srarrorvear and ewnorvear functions, with the exception that they
don't have an optional parameter for an alternative end date.

Comparing values over different
periods of time

Another category within the time intelligence group of functions are those that
return a table of dates. These functions are largely used as the filter
parameter, for the carcurate function and are used to create comparisons of
values over different time periods.

The functions in this category are as follows:

® DATEADD, DATESBETWEEN, and paresTnPERIOD

® DATESMTD, DATESQTD, and patesyro

® NEXTDAY, NEXTMONTH, NEXTQUARTER, and vexryear
e parALLELPERIOD ANd SAMEPERTODIASTYEAR

® PREVIOUSDAY, PREVIOUSMONTH, PREVIOUSQUARTER, aIKj PREVIOUSYEAR

We'll begin our look at this category of time intelligence functions with the
pateanp function. This function will take a set of dates and then move them by
the given number of the specified time interval.

The syntax of the parearp function is as follows:
DATEADD (<Dates>, <NumberOfIntervals>, <Interval>)

The first parameter is either the name of a column containing dates or a one-
column table containing dates. The second parameter is the number of the
specified intervals that you want to move the dates by, and the third
parameter is the interval type. The interval type can be day, month, quarter,
or year. To demonstrate this, do the following:

1. Create a new measure using the following expression:

Sales Amount Last Month =
CALCULATE (
SUM (Sales[Sales Amount]),

DATEADD (
'Date Table' [Date],
-1,
MONTH

This takes our table of dates and returns a table with the date shifted
back by one month. The result from this is then used as the filter
parameter of the carcurare function, which evaluates the expression
that sums the Sales Amount column of the Sales table.

With this measure, we can compare the sales amount for a month with
the sales amount of the previous month, as can be seen in Figure 8-7:

Year | Month Sales Amount Sales Amount Last Month
2007 January £193,305,554.64

2007 February £200,439,067.93 £193,305,554.6355
2007 March £203,991,979.69 £209,439,067.9252
2007 April £276,891,048.16 £203,991,979.691
2007 May £276,691,0458.1564
2007 June £288,749,508.611
2007 July £283,186,644.544

2007 August £272,818,635.112
£263,780,279.28

2,781.95
£288,852,903.018
£308,752,784.654

£297,341,103.654

2007 September
2007 October

2007 Movember

2007 December

2008 January

2008 February £183,970,020.2795
2008 March £191,106,948.2956
2008 April £183,393,312.8925
2008 May £22 , 2

2008 June . £220,502,302.237
2008 July £246,239,251.91 £214.455381.544
2008 August £231,189,642.07 £246,239,251.905
2008 September £227842617.84 £231,189,642.073
2008 October £211,203,579.42 £227,942 617.841

Figure 8-7: Comparing the sales amount for a month with the sales amount of the previous month

This same result could also be obtained by using the eararrErPERTOD
function. This function is very similar to the pareanp function and the
syntax for it is as follows:

PARALLELPERIOD (<Dates>, <NumberOfIntervals>, <Interval>)

2. To use this function instead, amend the previous measure by using the
following expression:

Sales Amount Last Month =
CALCULATE (
SUM (Sales[Sales Amount]),
PARALLELPERIOD (
'Date Table' [Date],
-1,
MONTH

There is a third way this result could be obtained, this time using the
ereviouswonts function. Unlike pareanp, this function only has one
parameter, and the syntax for it is as follows:

PREVIOUSMONTH (<Dates>)

3. To use this function instead, amend the previous measure using the
following expression:

Sales Amount Last Month =

CALCULATE (
SUM (Sales[Sales Amount]),
PREVIOUSMONTH ('Date Table' [Date])

All the xexr and erevrous functions work in the same way as the erevrousmonts
function — they just move the date by different intervals.

The DATESMTD, DATESQTD, and paresyro functions all return a table containing a
column of the dates for the month, quarter, or year to date in the current
context. They all take one parameter, which is the name of the column
containing dates or a one-column table containing dates.

In the next part of this chapter, we'll look at the paresvro function being used as
a filter with the carcurate function to create a measure that returns the year-to-
date sales amount.

The opening and closing balance
functions

The last intelligence function that we're going to focus on is the
crostneearancevonts function. This function belongs to the third category of time
intelligence functions that evaluate expressions over a period of time.

The crostneearancevonts function evaluates an expression for the last date of the
month in the current context. The crosincearanceouarter and crosincearancevear
functions work in the same way, except they evaluate an expression for the
last date of the quarter and year, respectively. The crosineearancevear function
also has an additional optional parameter that allows you to specify a
different year-end date (the default being December 31).

The syntax of the crosneearancemonts function is as follows:
CLOSINGBALANCEMONTH (<Expression>, <Dates> [, <Filter>])

The first parameter is the expression that is to be evaluated. This can be a
DAX expression or an existing measure. In our example, we are going to use
a measure called YTD Sales. This measure calculates a cumulative total of
sales to date for each year:

1. There are a couple of ways we can calculate this measure using other
functions from the time intelligence group. Firstly, we could use the
paresyrp function with the carcurate function, as in the following example:

YTD Sales =
CALCULATE (
SUM (Sales[Sales Amount]),
DATESYTD ('Date Table' [Date])
)

Alternatively, we could use a function from the category of functions
that evaluate expressions over a time period; the roraryro function:

YTD Sales 2 =

TOTALYTD (
SUM (Sales[Sales Amount]),
'Date Table'[Date]

We can see the results of both measures in Figure 8-8, which shows
daily sales amounts, along with the results of both versions of our
year-to-date total sales measures:

Year | Quarter Month Day | Sales Amount ¥TD Sales YTD Sales 2

2007 Qtr1 January 1 £6,085,839.18 £6,085,839.1825 £6,085,830.1825
2007 Qtr1 January 2 £6,270,657.17 £12,356,496.352 £12,356,496.352
2007 Qtr1 January E £6,096,024.11 £18,452520.464 £18,452 520464
2007 Qtr1 January 4 £5,979,164.12 £24,.431,684.5935 £24,431,684.5935
2007 Qtr1 January 5 £5,926,584.02 £30,358,268.609 £30,358,268.609
2007 Qtr1 January & £6,150,610.75 £36,508,879.3615 £36,508,879.3615
2007 Qtr1 January 7 £6,517,040.34 £43025919.697 £43 025,919,697
2007 Qtr1 January L] £5,856,724.52 £48 882 644.2165 £48,882 644.2165
2007 Qtr1 January Q £6,184,820.44 £55,067,464.6555 £55,067 464.6555
2007 Qtr1 January 10 £6,612,222.96 £61,679,687.613 £61,679,687.613
2007 Qtr1 January 11 £6,524 046.81 £68,203,734.4195 £68,203,734.4195
2007 Qtr1 January 12 £5,889,201.13 £74,092,935.5675 £74,092,935.5675
2007 Qtr1 January 13 £6,330,346.71 £80,423,282.282 £20423 282,282
2007 Qtr1 January 14 £5,045,346.59 £86,368,628.8765 £86,368,628.8765
2007 Qtr1 January 15 £6,385,077.45 £92 753,706.323 £82753,706.323
2007 Qtr1 January 16 £6,173,139.29 £98,926,845.6095 £098,026,845.6095
2007 Qtr1 January 17 £6,709,543.94 £105,636,389.549 £105,636,389.549
2007 Qtr1 January 18 £6,143,140.45 £111,779,529.9975 £111,779,529.9975
2007 Qtr1 January 19 £6,034,566.93 £117,814,096.929 £117,814,006.929
2007 Qtr1 January 20 £6,354,141.60 £124,168,238.5275 £124,168,238.5275
2007 Qtr1 January 21 £6,617,879.81 £130,786,118.334 £130,786,118334
2007 Qtr1 January 22 £6,800,149.52 £137,586,267.858 £137,586,267.858
2007 Qtr1 January 23 £6,226,790.07 £143 813,057.927 £143,813,057.927
2007 Qtr1 January 24 £5,884 40649 £149,697 404.416 £140,597 464418
2007 Qtr1 January 25 £5,702,550.69 £155,400,015.1105 £155,400,015.1105
2007 Qtr1 January 26 £6,108,977.86 £161,508,992.9685 £161,508,992.9685
2007 Qtr1 January 27 £6,301,865.73 £167,810,858.6935 £167,810,858.6935
2007 Qtr1 January 28 £6,273,568.46 £174,084,427.1525 £174,084.427.1525
2007 Qtr1 January 29 £6,359,243.46 £180,443 670.6085 £180,442 670.6085
2007 Qtr1 January 30 £6,360,062.75 £186,803,733.3535 £186,803,733.3535
2007 Qtr1 January 3 £6,501,821.28 £193,305,554.6355 £193,305,554.6355
2007 Qtr1 February 1 £6,824,039.74 £200,129,594.3759 £200,129,594,3759
2007 Qtr1 February 2 £7,050,235.153 £207,179,829.5274 £207,179,829.5274

Figure 8-8: Displaying both versions of the YT D sales measures

For the second parameter of the crostneearancevonts function, we need
to give either the name of a column containing dates or a one-column
table containing dates. In our example, it will be the date field from
our date table.

Finally, we can specify an optional filter for the third parameter. In
this example, we're going to restrict the year-to-date sales figures to
just those for products in the Economy class.

2. We'll now create our example measure using the following DAX
expression:

EOM Sales Balance =
CLOSINGBALANCEMONTH (
[YTD Sales],
'Date Table'[Date],
'Product' [Class] = "Economy"

Figure 8-9 shows the result of using this measure, splitting our year-
to-date sales amount by month, quarter, and then by year:

1&3' Quarter | Month ECM Sales Balance A Year Quarter EOM Sales Balance Year EOM Sales Balance
2007 Otr1 January £21,190,753.942 2007 Otr1 £62,556,439.5748 2007 £209,544.203.4121
2007 Qtr1 February £41,812,972.5876 2007 Otr2 £148,380,108.8536 2008 £362,693,009.241
2007 Ctr1 March £62,556,439.5748 2007 Qtr 3 2009 £545995947.169%
2007 Qtr2 April £90,673,680.3726 2007 Qtrd £299,544 303.4121 Total

2007 Qtr2 May £119.734,981.9186 2008 Qtr1 £81,600,342.8523

2007 Qir2 June £148,389,108.8536 2008 Qtr2 £173,9809,300.6865

2007 Qtr3 July £174,865,281.5046 2008 Otr3 £268,804,523.5495

2007 Qtr3 August £198,848,035.8156 2008 Qtrd £362,693,099.241

2007 Qtr3 September £222 232 643.5096 2009 Qtr1 £119,587 5983756

2007 Qtrd October £249172 463.7976 2009 Otr2 £257,815,265.4974

2007 Qtrd November £275036,272.3541 2009 Otr3 £401,866,568.3004

2007 Qtrd December £299544303.4121 2009 Qtrd £545,996,947.1699

2008 Qir1 January £27618,611.5265 Total

2008 Oir1 February £55,242,289.4006

2008 Qtr1 March £81,699,342.8523

2008 Otr2 April £113,271,988.9115

2008 Qtr2 May £144,388,045,5115

2008 Qtr2 June £173,989,360.6865

2008 Otr3 July £207 444 915.5575

2008 Qtr3 August £235.453,047.0435

2008 Otr3 September £268,804,523,5405

2008 Otrd October £296,231,504.7475

2008 Qtrd November £329,210,907.3535

2008 Qtrd December £362,693,099.241 "

Total

Figure 8-9: Using the crosneearancemonts function

In this example, we used a running sales total over the course of a year. A
more typical example of using the crostneearance function would be where you

have a different total for each day; for example, stock levels or the balance of
a bank account.

The orentneearance function is very similar to the crosteearance function except
that it evaluates the expression at the first date of the month, quarter, or year
in the current context instead of the last date.

Summary

In this chapter, we started off by looking at the DAX date and time group of
functions. We looked at how these functions can be used to create a custom
date table in our data model, and how they can be used to find out date-
related information, such as the number of days between two dates.

We then moved on to look at the time intelligence group of functions. We
looked at the three different categories of function available in this group and
how they can be used to help us gain further insight into the data held in our
data model. We worked through a number of hands-on examples of these
functions, using them to return single dates, tables of dates, and learning how
to compare values over different time periods.

In the next chapter, we will continue our look at DAX functions by learning
about the filter group of functions.

Filter Functions

In this chapter, we are going to be looking at the DAX group of functions that
are used to filter data. We'll start off with a brief description of each of the
functions in this group before turning our attention to some hands-on
examples.

This chapter is broken down into the following sections:

e Introduction to filter functions
e Filtering your data with filter functions

Introduction to filter functions

We've already looked at some of the filter functions in previous chapters
when we were looking at the evaluation contexts. In crapter 1, What is DAX?
and cnapter s, Getting it into Context, we looked in some detail at the
carcuzate function. We also touched on the avr, rrorer, and xeeprrirers functions.
In this chapter, we'll revisit these and take a more detailed look at some of
the other functions in this group.

Filter function reference

The following gives a list of the DAX functions found in the filter function
group, along with a brief description of the functionality provided by each:

are: This returns a table that includes all of the rows of a specified table
or all of the values of the specified column or combination of columns.
It ignores any filters that have been applied to the table. The aw. function
can be used with the carcorare and carcurarerasce functions to remove
filters from the filter context.

artexceer: This 18 similar to the arr function in that it returns a table that
includes all of the values for the combination of columns from the
specified table, excluding the specified columns. Like the a:1 function, it
can be used with the carcurare and carcurarerasre functions to remove
filters from all but the specified columns.

arnoerankrow: 1his works much like the ~1r function, but unlike that
function, it does not include the blank row that is generated when there
is a missing record on one side of a table relationship.

arnserecrep: This returns a table that includes all of the rows of a
specified table or all of the values in a column or combination of
columns. It ignores filters applied inside the query, whilst retaining any
external filters. The ariserecrep function can be used with the carcurars
and carcurarerapie functions to restore explicit filters and contexts.
carcurare: This evaluates an expression with a context that is modified by
filters. Filter parameters can either remove or restore filters.
carcuraterasre: 1his evaluates a table expression in a context modified by
filters. Filter parameters can either remove or restore filters.

rrrTer: This returns a filtered table or table expression using a Boolean
expression that is used to evaluate each row of the table.

xeeprriTERS: 1hiS changes the way filters are applied when evaluating a
carcurate O carcurarerasre function by overriding the standard behavior of
both functions. Where the filter parameters of the carcurare and
carcurateraeie functions replace the current context, the xererrirers function
adds filters to the current context.

e rooxuevarue: This returns a single value that is retrieved by searching for
a value in a table. If no match satisfies all of the search values, sranx 18
returned.

e revoverinTers: 1his removes filters from the specified tables or columns.
The revoverirrers function 1s equivalent to the a1 function when used as a
modifier with the carcurare and carcurarerasre functions.

e serectepvarve: This returns the value of the specified column when there's
only one value to return; otherwise, it returns the alternate specified
result.

Filtering your data with filter
functions

From the brief descriptions given in the previous section, it's not always
clear exactly what each filter function does. The easiest way to understand
these functions i1s by going through some of them using hands-on examples. In
this section, we're going to do just that, starting with a look at the a1 and
arrexcepr functions.

The ALL and ALLEXCEPT
functions

When used as a table function, and depending on the parameters used, the a:.
function returns a table that contains all of the values of a column, all of the
values of a combination of columns, or all of the rows of a specified table.
More importantly, the zrr function ignores any filters or slicers that may be set,
effectively removing them from the current filter context.

However, when the ai. function is used as a parameter with the carcurare and
carcuraterasie functions, its functionality is different. Instead of returning a table
that contains all of the values of a specified column or combination of
columns, it removes the specified columns from the current filter context.

The syntax for the a1 function is as follows:

ALL ([<TableNameOrColumnName>] [, <ColumnName> [, <ColumnName> [, ..] 1 1)

Let's start by demonstrating how the a1 function works as a table function. In
Figure 9-1, we have the following simple report that shows records from the
Product table, filtered using a couple of slicers. It currently shows products
that have a value in the Color column of Red and a value in the Class column
of Regular. Also, there is a count of the selected rows:

Class Productkey Product Name Color | Class
Deluxe 17 Contoso §GB Super-5iim MP3/ideo Player ME00 Red Red Regular
Economy 28 Contoso 16GE Mp5 Player M1600 Red Red Regular

. QEguIar 30 Contosa 32GE Video MP3 Player M3200 Red Red Regular] 9

84 NT Wireless Bluetooth Stereo Headphones M402 Red Red Regular
92 NT Wireless Transmitter and Bluetooth Headphones M150 Red Red Regular

Color 356 Fabrikam Laptop14.1W hM4180 Red Red Regular
Azure 358 Fabrikam Laptop12 M2002 Red Red Regulal
Black 360 Fabrikam Laptop13.3 M3000 Red Red Regular
Blue 361 Fabrikam Laptop13.3W M3080 Red Red Regular
Brown 381 Adventure Warks Laptop15 M1501 Red Red Reguiar
Gold 382 Adventure Works Laptopl12 M1201 Red Red Regular
Gresn 383 Adventure Works Laptopl16 M1601 Red Red Regular
Gre}-‘ 384 Adventure Works Laptop13.4W M 1345 Red Red Regular
Drange 1582 SV DVD 48 DVD Storage Binder M50 Red Red Regular
Pink 593 SV DVD 58 DWD Storage Binder M35 Red Red Regular
Purple 1596 SV DVD 550WD Sterage Binder M56 Red Red Regular

. Red 637 Contoso DVD 48 CVD Storage Binder M50 Red Red Regular

) 1638 Contosoc DVD 58 DVD Storage Binder M35 Red Red Regular
Silver 16841 Contose DVD S55CVD Storage Binder M36 Red Red Regular
Silver Grey
White
ellow

Figure 9-1: Filtering a table with slicers in a Power BI Desktop report

The measure to show the count of selected products was created using the
following expression:

|Count of Selected Products = COUNTROWS ('Product')

Now, let's create another new measure, this time using a DAX expression that
uses the Product table as the parameter to the ~cr. function, as shown:

|Count of ALL Products = COUNTROWS (ALL ('Product'))

This measure is similar to the first but makes use of the ar. function to ignore
the filters coming from our two slicers. This produces the result shown in
Figure 9-2, which equals the total number of records in the Product table:

1690

Figure 9-2: Ignoring slicers with the arz function

When the column of a table 1s used as a parameter, the »w.. function returns a
table containing a distinct list of values from that column. We will
demonstrate this by creating a new table using the following expression:

|Product Color = ALL (‘Product'[Color])

If we look at the new table, we see the result shown in Figure 9-3, which is
the distinct list of values found in the Color column of the Product table:

1 Product Color = ALL ((| "Product'[Color])I

Color |~
Silver
Blue
White
Red
Black
Green
Orange
Pink
Yellow
Furple
Brown
Grey
Gold
Azure
Silver Gray

Transparent

Figure 9-3: Creating a calculated table with a distinct list of values from a single column of another table

If we supply several columns from the same table as parameters, the arr
function will return a table that contains a distinct list of values from the
combination of those columns. Again, we will demonstrate this by creating
another new table, this time using the following expression:

Product Color Class and Brand =
ALL (
'Product' [Color],
'Product' [Class],
'Product’' [Brand]
)

If we look at the new table, we see the following result as shown in Figure 9-
4, which is the distinct list of values coming from the combination of the
Color, Class, and Brand columns of the Product table:

Product Celor Class and Brand =

2 ALL [
3 "Product ' [Color],
4 "Product'[Class],
5 "Product ' [Brand]
5)
Color |~ || Class |~ Brand -
Silver Regular Contosc
Silver Regular | Wide World Imparters
Silver Regular Nerthwind Traders
Silver Regular | Adventure Works
Silver Regular Southridze Video
Silver Regular | Litware
Silver Regular | The Phone Company
Silwer Regular Fabrikam
Silver Regular | Proseware
Silver Regular A Datum
Blus Regular | Contoso
Blue Regular Wide World Importers
Blus Regular | Northwind Traders
Blue Regular Adventure Works
Blus Regular | Southridge Video
EBlue Regular | Fabrikam
Blue Regular A Datum

Figure 9-4: Creating a calculated table with a distinct list of values from a combination of columns of another table
[] | When specifying multiple columns for the parameters of the arx function, they must all

| TiP be from the same table.

Now, let's turn our attention to using the ai. function as a filter parameter of
the carcorate and carcurarerasre functions. As already mentioned, when used in
this manner, the a1 function removes the specified table or columns from the
current filter context.

is equivalent to the arr function when used as a modifier with the carcorare and
CALCULATETABLE fUNCLIONS.

ﬂ In the latest versions of DAX, there is a new function called revoverrirers. This function

We can demonstrate this action by creating two new measures using the
following expressions:

Count of Products with Class =
CALCULATE (
COUNTROWS ('Product'),
ALL ('Product'[Color])
)

Count of Products with Color =
CALCULATE (
COUNTROWS ('Product'),

ALL ('Product'([Class])

The first measure will remove the filter created by selecting a value in the
Color slicer, whilst the second will remove the filter created by selecting a
value 1n the Class slicer. This has the effect of giving us a row count for the
total number of products from the selected class and a row count for the total
number of products with the selected color. This can be seen in Figure 9-35:

Class - Producikey Product Mame Color | Class
Deluxe 17 Contoso 8GB Super-5im MP3/Video Player MS00 Red Red Regular
Economy 28 Contoso 16GB MpS Player M1600 Red Red Regular
. QEguIar 30 Contoso 32GE Video MP3 Player M3200 Red Red Regular] 9
84 NT Wireless Bluetooth Stereo Headphones M402 Red Red Regular
92 NT Wireless Transmitter and Bluetooth Headphones M150 Red Red Regular
Color g 356 Fabrikam Laptop14.1%W M4180 Red Red Regular
Azure 358 Fabrikam Laptop12 M2002 Red Red Regular
Black 360 Fabrikam Laptop13.3 M3000 Red Red Regular
Blue 361 Fabrikam Laptop13.3W M3080 Red Red Regular
Brown 381 Adventure Works Laptop15 M1501 Red Red Regular
Gold 382 Adventure Works Laptop12 M1201 Red Red Regular
Green 383 Adventure Works Laptop16 M1601 Red Red Regular
Grey 384 Adventure Works Laptop13.4W M1548 Red Red Regular 3 9
Orange 1592 SV DVD 45 DVD Storage Binder M350 Red Red Regular
Pink 593 SV DVD 55 CVD Storage SBinder M35 Red Red Regular
3urple 596 SV DVD 55DVD Storage Binder M36 Red Red Regular
. Red 637 Contoso DVD 45 DVD Storage Binder M50 Red Red Regular
) 1638 Contoso DVD 58 DVD Storage Binder M55 Red Red Regular
Silver 1641 Contoso DVD 55DVD Storage Binder M36 Red Red Regular
Silver Grey
White
Yellow 9 3 U

Figure 9-5: Using the ar1 function to remove individual slicers from a measure

Here, we have 19 products in the Product table that are both Red in color and
are from the Regular class. The first of our measures tells us that there is a
total of 39 products in the Product table that are Red in color irrespective of
their class. The second measure tells us that the Regular class of products
contains a total of 930 products, this time irrespective of their color.

On its own, this may not be particularly useful information, but it does enable
us to work out percentages. So, for example, to work out the selected products

as a percentage of products for a particular class, you could create a measure
using the following expression:

% Selected of Product Class =
DIVIDE (
COUNTROWS ('Product'),
'Product' [Count of Products with Class]

And to do the same for color, you would create the following measure:

% Selected of Product Color =
DIVIDE (
COUNTROWS ('Product'),
'Product' [Count of Products with Color]

We will now add these products, correctly formatted as percentages, to our
final report, as shown in the Figure 9-6:

Class - Productey Product Name Color | Class
Deluxe 17 Contoso 8GB Super-Siim MP3Nideo Player M800 Red Red Regular
Economy 28 Contoso 16GB Mp5 Player M1600 Red Red Regular

| | Regular 30 Contoso 32GB Video MP3 Player M3200 Red Red Regular] 9

84 NT Wireless Bluetooth Stereo Headphones M402 Red Red Regular

92 NT Wireless Transmitter and Bluetooth Headphones M150 Red Red Regular

Color v 356 Fabrikam Laptop14.1W I Red Regular
Azure 359 Fabrikam Laptop12 M2002 Red Red Regular
Black 360 Fabrikam Laptop13.3 M3000 Red Red Regular
Elue 361 Fabrikam Laptop13.3W M3080 Red Red Regular
Brown 381 Adventure Works Laptop15 M1501 Red Red Regular
Gold 382 Adventure Works Laptop12 M1201 Red d Regular

383 Adventur Red Regular

Green prsjworksiEeptop [oILIS0]
- 384 Adventure Works Laptop13.4W M1348 Red Red Regular 3 9 4 9 %
Grey - - -) -

1392 SV DVD 48 DVD Storage Binder M320 Red Red Regular
Orange - i oa e < i -
Pink 1583 SV DWD 58 DVD Storage Binder M35 Red Red Regular
- I 596 SV DVD 55DVD Storage Binder M56 Red Red Regular
urple
. o |p 1637 Contoso DVD 48 DVD Storage Binder M50 Red Red Regular
ed
a 1638 Contoso DVD 58 DVD Storage Binder M55 Red Red Regular
Silver 1641 Contoso DVD 55DVD Storage Binder Ms6 Red Red Reguiar
Silver Grey
White
Yellow

930 2%

Figure 9-6: Power BI Desktop report showing all of our new measures

As we can see from Figure 9-6, the 19 selected products represent 49% of the
total number of red-colored products. However, they only represent 2% of
products from the Regular class of products.

For more information on using the air function, check out the section in crapcer s,
Getting it into Context, titled Using the ALL function.

Now, let's look at the arrexceer function. The syntax for the ariexceer function is
as follows:

ALLEXCEPT (<TableName>, <ColumnName> [, <ColumnName> [, ..]])

e As mentioned in the description in the preceding reference list, this
function 1s very similar to the i function.

o However, instead of specifying the columns to be removed from the filter
context, you specify the columns that should remain.

o It will remove all of the columns in the specified table, except those
given as the column parameters.

e Unlike the a1 function, you must specify both the table name and one or
more column names.

e The arrexceer function is useful where you have lots of filters being
applied to the filter context.

e Suppose you had a case where there were 30 filters applied and you only
wanted to retain one of them for your calculation. In such a case, if you
were using the arr function, you would need to pass 29 columns as
parameters.

o With the ariexczer function, you would only need to pass the table name
and the name of the column that you wanted to retain the filter for.

The ALLSELECTED function

Much like the 2 and arrexceer functions, the arnserecren function removes filters
from the current filter context. It ignores filters applied inside a query, but
will retain any external filters. When used with the carcorare and carcurarerasie
functions, it enables you to restore explicit filters and contexts.

The syntax for the ariserzcren function is as follows:

ALLSELECTED ([<TableNameOrColumnName>] [, <ColumnName> [, <ColumnName> [, .. 1 1 1)

To demonstrate the ariserzcren function, let's create two new measures using
the following expressions:

Total ALL Sales =

CALCULATE (
SUM (Sales[Sales Amount]),
ALL ('Product')

)

Total SELECTED Sales =

CALCULATE (
SUM (Sales[Sales Amount]),
ALLSELECTED ('Product')

)

The first of these measures creates a total value that removes all filters
applied to any of the columns in the Product table. The second only removes
filters from inside a query, leaving those applied by any external filters intact.
This means, for example, that any filters being applied by slicers will still be
included in the filter context.

We will now use these measures in the following code to create another two
measures to calculate the percentage of the overall sales total and the
percentage of the sales total for the products selected using an external filter,
such as a slicer:

% ALL Sales =

DIVIDE (
SUM (Sales[Sales Amount]),

[Total ALL Sales]

% SELECTED Sales =

DIVIDE (
SUM (Sales[Sales Amount]),
[Total SELECTED Sales]

We can now see these measures applied to a new version of our report, as
shown in Figure 9-7:

Class Productkey Product Name Color Class Sales Amount Total ALL Sales % ALL Sales | Total SELECTED Sales | % SELE

Deluxe 17 Regular £8,341,224,364.8324 0.01% 1.14%

Economy 28 Regular 3,341,224,364.8324 0.01% 0.72%

W Regular 0 £8,341,2 0.02% 2.10%

84 £8,341, 001% 0.50%

92 £8,341 001% . 0.99%

Color 356 F £8,341,224,364.8324 012% £03,390,791.1045 10.36%

Azure 359 £8,341,224,364.8324 0.09% 1 8.15%

Black 360 Fabrikam Laptop Red £8,341,224,304.8324 010% 8.53%

Blue 361 Fabrikam L Red £8,341,224,364.8324 010% 8.59%

Brown 381 Adventurs Works Laptop15 M1501 Red Red £3.341, f4.3324 0.18% 16.21%

Gold 352 Adventure Works Laptop12 M1201 Red Red £3,341 43324 010% .59%

Green 383 Adventure Works Laptop16 M1601 Red Red £8,341,224,364.8324 016% 14.10%

Gray mture Works Laptop15.4W M Red £3.341,2243648324 0.19% 17.28%

Orange 1592 SV DVD 48 DVD Storage Bin Red T £8341.224364.3324 0.00% 0.40%

ink 1593 SV DVD 58 DVD Red Regular £295,645.18 £3,341 64.8324 0.00% 032%

Fin N 1596 SV DVD 55DVD Red Regular £274,03494 £3341,224,364.8324 0.00% . 0.29%

m Purple 163 Red Regular £335,01803 £2341,224 3643324 0.00% £03,390,791.1045 0423

(R_Ed 1638 Contoso DVD 58 DVD Red Regular £290,31533 £8,341,224,364.8324 0.00% £93 39 1 032%

Sfiver 1641 Contoso DVD S50VD Storage Binder M56 Red Red Regular £275,697.88 £2341,224 3643324 0.00% £03,39! 030%

Silver Grey Total £93,399,791.19 £8,341,224,364.8324 1.12% £92,399,791.1945 100.00%
White
Yellow

Figure 9-7: Power BI Desktop report with measures added to a table

As can be seen, the Total ALL Sales measure removes all filters coming from
columns in the Product table, whilst the Total SELECTED Sales measure only
removes filters from within the query being created by the table visual. It does
not remove the external filters coming from the two slicers. This gives us the
overall total for sales of the products selected using the slicers.

The FILTER function

Next, we are going to look at the rirrer function. This function returns a
filtered table, using a Boolean expression that is used to evaluate each row
of a specified table.

The syntax for the rirrer function is as follows:

FILTER (<Table>, <FilterExpression>)

o The first parameter is the name of the table that is to be filtered.

e The second parameter is the DAX expression that is to be applied to
each row of the table specified with the first parameter.

e The expression must evaluate to true Or rarse.

Let's look at a practical example of this function in operation. Consider the
following measure:

Count of Regular Products =
COUNTROWS (
FILTER (
'Product’',
'Product' [Class] = "Regular"

The result of this measure can be seen in Figure 9-8:

Brand Count of Productkey Count of Regular Products
A. Datum 132 89
Adventure Works 128 71
Contoso 560 269
Fabrikam 163 107
Litware 45 36
Northwind Traders 27 10
Proseware 177 105
Southridge Video 170 71
The Phone Company 152 104
Wide World Importers 133 68
Total 1680 930

Figure 9-8: Using the rrrrer function in a measure

Here, we can see that the rrrrer function has iterated through the Product
table, looking for products with a value in the Class column equal to
Regular. The rows that evaluated to r=uz were then returned, as a table, to the
countrows function, giving the values we see in the Count of Regular Products
column in the preceding screenshot.

You can add additional constraints to the DAX expression being used as a
filter, including the use of the axo and or operators. You can also use the
reratep function to check for conditions in tables related to the table specified
as the table parameter of the rrrrer function.

You should also remember that any explicit filters you create using the rirrer
function are on top of any implicit filters that may be coming from external
sources such as slicers.

The KEEPFILTERS function

As a function, the xezeerinrers function does not return a value as such. Instead,
1t 1s a filter modifier that overrides the standard behavior of the carcurare and
CALCULATETABLE functions.

The syntax for the xeerrrrrers function is as follows:

KEEPFILTERS (<Expression>)

The xezerrirers function changes the way filters are applied when evaluating a
function. Where the filter parameters of the carcurare and carcurarerapie
functions would normally remove columns from the filter context, the
xezpriTErs fUnction will prevent them being removed if they conflict with the
expression being given as the parameter of the xeeerrirer function.

Let's demonstrate this with an example. Suppose we have the following
measure:

Sales Amount for Red Products =
CALCULATE (
SUM (Sales[Sales Amount]),
'Product' [Color] = "Red"
)

This measure may give us undesired results. By default, it will remove the
Color column of the Product table from the filter context. We can see the
results of this in Figure 9-9, where the measure has been used in a table
visual:

Brand Color Sales Amount for Red Products ”
A. Datum Azure

A. Datum Black

A. Datum Blue

A Datum Gold

A. Datum Green

A. Datum Grey

A Datum Orange

A. Datum Pink

A. Datum Silver

A. Datum Silver Grey

Adventure Works Black 86135967
Adventure Works Blue 86135967
Adventure Works Erown 86135967
Adventure Works Red 86135967
Adventure Works Silver 86135967
Adventure Works White 86135967
Contoso Black 27650572
Contoso Elue 27650572
Contoso Brown 27650572
Contoso Gold 27650572
Contoso Green 27650572
Contaso Grey 27650572
Contoso Orange 27650572
Contoso Pink 27650572
Contaso Purple 27650572
Total 188643086

Figure 9-9: Displaying a measure that doesn't use the xezprivrERs function

As it is, the filter parameter of the carcurate function overrides the Color filter
that 1s being passed from the Color column of the visual. Where a Brand does
not have a red-colored product, the measure returns a null; otherwise, it
returns the total value for the Brand.

If we now modify the measure to use the xzzprrirers function with the filter
parameter of the carcurare function, then the filters being applied by the visual
to the Color column will be preserved.

Suppose we modify our original measure to the following:

Sales Amount for Red Products =
CALCULATE (
SUM (Sales[Sales Amount]),
KEEPFILTERS ('Product'[Color] = "Red")

Then we get the desired result, as can be seen in Figure 9-10:

Brand Color 5ales Amount for Red Products a
A. Datum Silver Greay

Adventure Waorks Black

Adventure Waorks Blue

Adventure Works Brown

Adventure Works Red 86135967
Adventure Works Silver

Adventure Works White

Contoso Black

Contoso Blue

Centoso Brown

Contoso Gold

Contoso Gresn

Contoso Grey

Contoso Orange

Contoso Pink

Contoso Purple

Contoso Red 27650572
Contoso Silver

Contoso Silver Gray

Contoso Transparent

Contoso White

Contoso Yellow

Fabrikam Black

Fabrikam Blue

Total 188643986

Figure 9-10: Using the kzeprrrTers function

Now, the Color filter being generated by the table visual is preserved in the
filter context, despite the column being used as a filter parameter of the
carcurate function. As expected, we only get a figure against the brand when
the color is equal to Red.

The LOOKUPVALUE function

The rooxue function returns a single value, which is retrieved by searching for
a value in a lookup table. If a match that satisfies all of the search values
cannot be found, either an alternative result can be specified or, if not, sranx
will be returned.

This function is useful when you have a situation where you need to obtain a
value from a lookup table that is not related to the table that contains the
source value.

The syntax for the rooxuevarvs function is as follows:

LOOKUPVALUE (<Result ColumnName>, <Search ColumnName>, <Search Value> [,

<Search ColumnName>, <Search Value> [, ..]] [, <Alternate Result>])

e For the first parameter, we need to specify the name of the column
containing the values you want returned as the end result. This is usually
a fully qualified name that includes both the table name and the column
name. We cannot use an expression for this parameter.

e For the second parameter, we need to specify the name of a column that
will be used as the lookup value. This column must be in the same table
used for the first parameter or a table that is related to it. Again, it
cannot be an expression.

e The third parameter is a scalar expression, which must not refer to a
column in the table that is being searched.

 Finally, we can also supply an alternate result, which will be used if a
lookup value is not found, or multiple results are returned by the search
criteria.

| Q | If an alternate result is not specified, then no value being returned will result in sran,
Ul and multiple values being returned will result in an error.

You can have multiple search columns and values, and the result that is
returned will be the value of the column specified in the first parameter,

where all of the search columns and values match.

Now, let's show this function in action. We'll start with a very simple data
model containing two tables, as shown in Figure 9-11, which are not
connected by a relationship:

“| Employee e | Employee Salary

A EmployeelD A EmployeelD
Fl Name f1 Increased Salary

1 ParentEmployeslD 1 Salary
Fll Title

Figure 9-11: Simple data model with two unrelated tables

The Employee table contains the data shown in Figure 9-12:

EmployeelD |E| Mame |E| Title |E| ParentEmployeelD |E|
100 | Peter CEQ
200 | Frank Business Manager 100
201 | Catherine Finance Manager 100
202 | Ross IT Manager 100
00| Siman Senior Administrator 200
301 | lane Administrator 200
302 | Richard Finance Assistant 201
303 | Julie Finance Assistant 201
304 Saad SharePoint Administrator 202
305 | Tim Web Developer 202
308 | Kate System Administrator 202
400 | John Junior Web Developer 305

Figure 9-12: The Employee table

On the other hand, the Employee Salary table contains the values shown in
Figure 9-13:

EmployeelD |~ | Salary |~ | Increased Salary |~

100 £150,000 160741.8
200 £80,000 8572856
201 £55,000 58938.66
202 £55,000 589358.66
300 £45,000 4822254
301 £40,000 4286445
302 £40,000 4286445
303 £40,000 4286445
304 £50,000 53580.6
305 £50,000 53580.6
306 £50,000 53580.6

Figure 9-13: The Employee Salary table

Now, let's create a new calculated column in the Employee table that takes
the value of the Salary column in the Employee Salary table, where the
Employee ID values match. We will do this with the following DAX
expression:

Salary Lookup =

LOOKUPVALUE (
'Employee Salary'[Salary],
'Employee Salary' [EmployeelD],
Employee [EmployeelID],
0

Figure 9-14 shows the Employee table with the new Salary Lookup column
added:

EmployeelD |~ | MName - Title ~ | ParentEmployeelD |~ | Salary Lookup |~
100 | Peter CED £150,000
200 | Frank Business Manager 100 £80.000
201 | Catherine Finance Manager 100 £55,000
202 Ross IT Manager 100 £55,000
300 | Siman Senior Administrator 200 £45,000
301 | Jane Administrator 200 £40.000
302 | Richard Finance Assistant 201 £40,000
303 | Julie Finance Assistant 201 £40.000
304 | Saad SharePoint Administrator 202 £50,000
305 | Tim Web Developer 202 £50,000
306 | Kate System Administrator 202 £50,000
400 | lohn Junior Web Developer 305 £0

Figure 9-14: Adding the Salary Lookup column to the Employee table

You can see that John's salary has a value of zero, which is the alternate
result value, as he does not have a corresponding record in the Salary table.

The SELECTEDVALUE function

The final filter function that we're going to look at in this chapter is the
serecreovarue function. This function returns the value of the specified column
when there's only one value in the current filter context to return. If no value is
selected, or more than one value is selected, it can return an optionally
specified alternate result.

The syntax for the serzcreovaroe function is as follows:
SELECTEDVALUE (<ColumnName> [, <AlternateResult>])

We will demonstrate a potential use of this function by creating a new
measure using the following DAX expression:

Selected Class =
SELECTEDVALUE (
'Product’'[Class],
"N/A"
)

Internally, the serecreovarue function is just simplified syntax for the combined
use of the rasonevarue and varues functions. The measure can be written using the
following expression:

Selected Class =
IF (

HASONEVALUE ('Product'[Class]),
VALUES ('Product'[Class]),
"N/A"

)

We can now use the first measure to display a dynamic title, as shown in
Figure 9-15:

Deluxe

163 Adventurs Works 52" LCD HOTV X790W White White D

164 Adventure Works 52" LCD HOTV X730W Brown Brown Delux

Class Productkey Product Name Color Class _
. Deluxe 37 Contoso 8GBE Clock & Radio MP3 Player X850 Silver Siver Deluxe
Econcmy 38 Contoso 8GE Clock & Radio MP3 Player X850 Black Black Deluxe
Regular 39 Contoso 8GE Clock & Radio MP3 Player X850 Green Green Deluxe
40 Contoso 3GB Clock & Radio MP3 Player X850 Blue Blue Deluxe
53 WWI4GE Video Recording Pen X200 Black Black Deluxe
54 WWI 4GE Video Recording Pen X200 Red Red Deluxe
55 WWI4GE Video Recording Pen X200 Pink Pink Celuxe
56 WWI 4GB Video Recording Pen X200 Yellow Yellow Deluxe
111 WWI Wireless Transmitter and Bluetooth Headphones X250 Black Black Deluxe
112 WWI Wireless Transmitter and Bluetooth Headphones X250 Blue Blue Deluxe
113 WWI Wireless Transmitter and Bluetooth Headphones X250 White White Deluxe
114 WWI Wireless Transmitter and Bluetooth Headphones X250 Red Red Deluxe
115 WWI Wireless Transmitter and Bluetocoth Headphones X250 Silver Silver Deluxe
145 Adventurs Warks 32" LCD HOTV X590 Silver Silver Deluxe
146 Adventurs Waorks 52" LCD HOTV X590 Black Black Deluxe
147 Adventure Works 52" LCD HOTV X590 White White Deluxe
148 Adventure Works 52" LCD HDTW X590 Brown Brown Deluxe
161 Adventure Works 52" LCD HOTV XT90W Silver Sibver Deluxe
162 Adventurs Warks 32" LCD HOTV X790W Black Black Deluxe
eluxe
eluxe
eluxe
eluxe

2 SV 22xDVD X680 Black Black Delux
5 I

o
=1

D\VD X&80 Silver Siver Delux

Figure 9-15: Displaying a dynamic title

As we can see, the Class slicer is adding one value in the Class column of the
Product table to the filter context. As such, the title displays the selected value
coming from the Class slicer. However, there is an issue with this. If no
values are selected with the slicer, or more than one value is selected, the
serectepvatus function will return the alternate result, which, in our example, is
N/A.

| 6 | If an alternate result is not specified in the parameters, then when no value is
I selected, or more than one value is selected, the seizcrspvarvs function will return sranx.

To overcome this problem, we can amend our measure to use the rr and
1srrrrerep functions, as follows:

Selected Class =
SELECTEDVALUE (
'Product'[Class],

IF (
ISFILTERED ('Product'|[Class]),
"Multiple Selected Values",
"No Selected Values"

)

e The rsrrureren function returns rrue or rarse depending on whether the
specified column is included in the current filter context.

e By using this in conjunction with the serecreovarve function, we can tell
whether a column is filtered, and if it is, whether i1t has one or more
values selected.

e Based on this, our revised measure will return one of two alternate
results, depending on whether values are selected with the Class slicer.

Figure 9-16 shows the result of our measure when no values are selected with
the Class slicer:

No Selected Values

Class Productkey Product Mame Caolor Class ~
Deluxe 1 Contoso 512MB MP3 Player E51 Silver Silver Economy
Economy 2 Caontoso 512MB MP3 Player E531 Blue Blue Economy
:iegular 3 Contoso 1G MP3 Player E100 White White Economy
4 Contoso 26 M Silver Economy
5 Contoso 2G M Rec Economy
& Contoso 2G M Black Economy

Figure 9-16: Dynamic title when no values are selected with the slicer

Figure 9-17 shows the result of our measure when multiple values are
selected with the Class slicer:

Multiple Selected Values

Class Productkey Product Name Color
B Deluxe 1 Contoso 512MB MP3 Player ES1 Silver Silver
. ECOITCF"I‘;.’ 2 Contoso 512MEB MP3 Player E31 Blue Blue
Regular 3 Contoso 1G MP3 Player E100 White White
4 Contoso 2G MP3 Player E200 Silver Silver
5 Contoso 2G MP3 E Red
& Contoso 2G MP3 Player E200 Blac Black

Figure 9-17: Dynamic title when multiple values are selected with the slicer

lace
Llass A

Economy
Economy
Econamy
Economy
Economy

Econamy

In addition to being a great way of creating dynamic titles, the serecrepvarus
function can be used anytime you need to retrieve a single value from the filter
context. However, you should remember that the serecrepvarvs function only

works with the filter context, not the row context.

Summary

In this chapter, we looked at the group of DAX functions used to filter data.
We revisited the arr and arrexceer functions, looking at how they can be used
as standalone table functions and how they behave differently when used
with the carcorate function. We looked at the ariserecren function and how it can
be used to remove filters inside a query, whilst retaining those filers coming
from outside the query.

We also took a more detailed look at some of the other functions in this
group, exploring their use through a number of hands-on examples.

In the next chapter, we will take our final look at DAX functions, this time
looking at the statistical group of functions.

Statistical Functions

This is the last chapter in which we will be looking at the different groups of
DAX functions. In this chapter, we will be looking at the group of functions
that help us to perform statistical aggregations.

As in previous chapters, we will start this chapter with a complete list of the
functions found in this group, along with a brief description of each. We'll
then move on and look in more detail at some of the more commonly used
functions in this group, all while using hands-on examples to explain how
they work.

The chapter is broken into the following sections:

e Introducing statistical functions

Calculating averages

Working with percentiles

Ranking your data

Calculating standard deviation and variance

Introducing statistical functions

The statistical group of DAX functions is one of the largest, with over 40
different functions currently available. Recently, several new functions were
added to this group that replicate some of the advanced statistical functions
found in Excel.

As well as some of the more specialist functions found in this group, it also
contains functions that will help you compute more frequently needed
statistical values, such as averages, percentiles, ranking, and standard
deviation.

In this section of this chapter, we will look at the list of functions that are
currently available in this group.

Statistical function reference

The following list details the DAX functions currently found in the statistical
function group, along with a brief description of what each function does:

e averace: Calculates the average value of all the numbers in a column.
This function only works with numeric values and cannot handle text or
non-numeric values.

e averacea: Calculates the average value of all the values in a column. In
addition to numeric values, this function will attempt to handle text and
non-numeric values.

e averacex: Calculates the average value of a set of expressions evaluated
over a table.

e eera.prst: Calculates the value of the beta distribution.

e eera.mwv: Calculates the value of the inverse of the beta cumulative
probability density function (sera.p1st).

e curso.nrst: Calculates the value of the chi-squared distribution.

e curso.prst.r7: Calculates the value of the right-tailed probability of the
chi-squared distribution.

e curso.wv: Calculates the value of the inverse of the left-tailed probability
of the chi-squared distribution.

e curso.mwv.rr: Calculates the value of the inverse of the right-tailed
probability of the chi-squared distribution.

e cowstn: Calculates the value of the number of combinations, excluding
repetitions, for a specified number of items.

e comstna: Calculates the value of the number of combinations, including
repetitions, for a specified number of items.

e conrroence.norv: Using a normal distribution, calculates a value for the
confidence interval for a population mean.

e conrroence.r: Using a Student's t-distribution, calculates a value for the
confidence interval for a population mean.

 mxeon.prst: Calculates the value of the exponential distribution.

e crovean: Calculates the value of the geometric mean of a specified
column.

ceamznx: Calculates the value of the geometric mean of a set of
expressions evaluated over a table.

menian: Calculates the value of the 50th percentile of values in a column.
wepranx: Calculates the 50th percentile of a set of expressions evaluated
over a table.

vorm.pst: Calculates the value of the normal distribution for the
specified mean and standard deviation.

vorm. Tvv: Calculates the value of the inverse of the normal cumulative
distribution for the specified mean and standard deviation.

worm.s.p1s7: Calculates the value of the standard normal distribution.
vorm.s. vv: Returns the inverse of the standard normal cumulative
distribution.

rercent1ie.Exc: Calculates the value of the kth percentile of values in a
column, with & in the range 0..1 exclusive.

rercentrre. ne: Calculates the value of the kth percentile of values in a
column, with & in the range 0.. 1 inclusive.

rercentTrEx. Exc Calculates the value of the kth percentile of a set of
expressions evaluated over a table, with & in the range 0.. 1 exclusive.
rercentirex. 1nc: Calculates the value of the kth percentile of a set of
expressions evaluated over a table, with & in the range 0..7 inclusive.
rervor: Calculates the number of permutations for the specified number
of objects that can be selected from number objects.

rorsson.p1st: Calculates the value of the Poisson distribution.

ranx.£0; Calculates a value for the rank of a number in a column of
numbers.

rankx: Calculates a value for the rank of a set of expressions evaluated
over a table.

savere: Returns a table containing a sample subset, consisting of a
specified number of rows from a specified table expression.

stoev.p: Calculates the value of the standard deviation for the entire
population of the specified column. Ignores logical values and text.
stoev.s: Calculates the value of the standard deviation for a sample
population from the specified column. Ignores logical values and text in
the sample.

stoevx.p: Calculates the value of the standard deviation for the entire
population, which results from a set of expressions evaluated over a
table.

e smoevx.s: Calculates the value of the standard deviation for a sample
population, which results from a set of expressions evaluated over a
table.

e r.o1st: Calculates the value of the Student's left-tailed t-distribution.

e r.o1st.21: Calculates the value of the two-tailed Student's t-distribution.

e r.oist.rr: Calculates the value of the right-tailed Student's t-distribution.

e r.mw: Calculates the value of the left-tailed inverse of the Student's t-
distribution.

e r.mw.2r: Calculates the value of the two-tailed inverse of the Student's t-
distribution.

e var.p: Calculates the value of the variance for the entire population of
the specified column.

e var.s: Calculates the value of the variance for a sample population of the
specified column.

e varx.p: Calculates the value of the variance for the entire population,
which results from a set of expressions evaluated over a table.

e varx.s: Calculates the value of the variance for a sample population,
which results from a set of expressions evaluated over a table.

e xmrr: Calculates the value of the internal rate of return (IRR) for a
schedule of cash flows, which is not necessarily periodic.

e xnev: Calculates the value of the net present value (NPV) for a
schedule of cash flows.

Many of the statistical functions in this group are used for advanced
calculations, and a full understanding of how they are applied is beyond the
scope of this book. However, as these functions can also be found in Excel,
they are well documented, and you should have no problem finding detailed
articles about them online.

you want details about all the statistical functions, then the official Microsoft
documel’ltal‘ion can befound at https://docs.microsoft.com/en-us/dax/statistical-functions-dax.

ﬂ We will only be looking at a selection of the statistical functions in this chapter. If

In the following section, we will look at some of the more frequently used
functions that, as a business intelligence professional, you are more likely to
come across or need to use to gain further insight into your data. Specifically,
we are going to look at some examples of calculating averages, percentiles,
rankings, standard deviations, and variances.

https://docs.microsoft.com/en-us/dax/statistical-functions-dax

Calculating averages

In this section, we're going to focus on two of the DAX functions designed
specifically for calculating averages: the averace and averacex functions.

The AVERAGE function

The syntax for the averace function is as follows:
AVERAGE (<ColumnName>)

This 1s a very simple function that is used to calculate the average value (or
the arithmetic mean) of all the numbers in a specified column. It's important
to remember that this function only works with numeric values, and it cannot
handle text or non-numeric values. If you want to include non-numeric values
in your calculation, you will need to use the averacea function instead, which
uses the same syntax as the averace function.

The averacea function deals with Boolean values as if they are integers, with true
returning a 1 and rarse returning a o. Any string values, including empty strings, will

9 result in a o, even if the string contains a number. This limits the usefulness of the
averacea function. It is better to use the averacex function, where you can convert string
values that contain a number using the varue function.

To demonstrate the averace function, create a new measure by using the
following expression:

|Avg Sales Amount = AVERAGE (Sales[Sales Amount])

This gives us a very simple measure, which is the average amount of all
sales made to date, or the average of all the values in the Sales Amount
column of the Sales table. We can use this measure to slice and dice the sales
data. For example, we can create a chart to show the average sales amount
for each year, as shown in Figure 10-1:

£4,500

£4,000 £4,223.4767

£3,790.9823

£3,500
£3,000
£2,500
£2,000
£1,500
£1,000

£500

2007 2008 2009

Figure 10-1: Average sales for each year

We can create a slightly more sophisticated measure by using the following
expression:

Avg Sales Amount for Red Products =

CALCULATE (
AVERAGE (Sales[Sales Amount]),
KEEPFILTERS ('Product' [Color] = "Red")

This measure will give us the average sales amount, but only for those
products with a color of Red. We could use this measure to show a
comparison of the average sales for red-colored products against the average
of all sales, as can be seen in Figure 10-2:

@ Avg Sales Amount @ Avg Sales Amount for Red Products
£5K

£4K
£3K
£2K

£1K

£0K

2007 2008 2009

Figure 10-2: Average sales per year compared to average sales for red products

Here, we can easily see that the average sales amount for red products
compared to the overall average sales amount is increasing year by year.

Calculating rolling averages with
the AVERAGEX function

Like the other iterator functions, the averacex function will iterate over the
table passed in as the first parameter, and will then give the average of
values returned by the expression given as the second parameter. As such,
this gives us a very flexible way to calculate averages, including being able
to calculate a rolling average.

The syntax for the averacex function is as follows:
AVERAGEX (<Table>, <Expression>)

For the first parameter, we need to specify a table or table expression over
which we want to iterate. For the second parameter, we need to give a
measure. For our rolling average, we need to create a measure for the total
sales amount. We can do this by using the following simple expression:

|Total Sales = SUM (Sales[Sales Amount])

Next, we need to create a measure using the averacex function, which will go
through the dates in the Date table and calculate the average based on the
daily total sales amounts, up to and including the date of the current row. This
can be done by using the following expression:

Rolling Avg Total Sales =
AVERAGEX (
FILTER (
ALL ('Date Table'),
'Date Table' [Date]
<= MAX ('Date Table' [Date])
) 14
[Total Sales]
)

The rrrrer function in this expression returns all the dates prior to the current
date, up to and including the current date. The averacex function then iterates

over these dates and calculates the average of the values returned by the
Total Sales measure. We can see the result of this more clearly by looking at
the table shown in Figure 10-3:

Eate Total Sales Rolling Avg Total Sales
01/01/2007 00:00:00 £6,085,839.1825 6,085,839.18
02/01,/2007 00:00:00 £6,270,657.1695 £,178,248.18
03/01/2007 00:00:00 £6,096,024.112 6,150,840.15
04/01/2007 00:00:00 £5,979,164.1295 6,107,921.15
05/01/2007 00:00:00 £5,926,584.0155 6,071,653.72
06/01/2007 00:00:00 £6,150,610.7525 6,084,813.23
07/01/2007 00:00:00 £6,517,040.3355 6,146,559.98
08/01/2007 00:00:00 £3,856,724.5195 6,110,330.53
09/01,/2007 00:00:00 £6,184,820.439 6,118,607.18
10/01/2007 00:00:00 £6,612,222.9575 b6,167,968.76
11/01/2007 00:00:00 £6,524,046.8005 6,200,239.49
12/01/2007 00:00:00 £5,889,201.148 6,174,411.30
13/01/2007 00:00:00 £6,330,346.7145 6,186,406.33
14/01/2007 00:00:00 £35,045,346,5045 6,169,187.78
15/01/2007 00:00:00 £6,385,077.4465 6,183,580.42
Total £8,341,224,364.8324 7.610,606.17

Figure 10-3: Rolling average of sales

So, for the first date, the measure calculates the average for this date only.
For the second date, it calculates the average based on the totals for the first
two dates, while for the third date, it's based on the totals for the first three
dates. It will continue through all the dates in the Date table, calculating the
rolling average for the total sales amount.

Working with percentiles

There are six DAX functions in this function group that will help you
calculate percentile values for a given set of data. They are eercenrrie. mxc,

PERCENTILE.INC, PERCENTILEX.EXC, PERCENTILEX.INC, MEDIAN, aruj,MEDIANX.

A percentile is a statistical measure that gives the value where a certain percentage
of values in a dataset fall below it. For example, the 30th percentile will be the value
in a dataset where 30% of the values fall below it, and the remaining 70% are
above it.

Before we start to look at these functions, let's use the following expression
to create a new table, which will contain the numbers 1 through to 20:

|Numbers = GENERATESERIES (1, 20)

Now, we can use this table as our dataset to help us understand how these
functions work. We'll start by looking at the first of these functions.

The PERCENTILE.EXC and
PERCENTILE.INC functions

The syntax for the eercentire.zxc function is as follows:
PERCENTILE.EXC (<Column>, <K>)
The syntax for the eercentire. mne function 1s as follows:
PERCENTILE.INC (<Column>, <K>)

For the first parameter, we need to give the column that contains the values
for the dataset that we want to work with. For the second parameter, we need
to give the percentile value (the kth) that we want to calculate, with the value
being between 0 and 1—in other words, the point at which a certain
percentage of values in the dataset are below.

We can demonstrate this function by creating a measure that will calculate the
25th percentile for the values in the Numbers table that we've just created.
We can do this with the following expression:

|Numbers 25th Percentile = PERCENTILE.EXC ('Numbers'[Value], 0.25)

This will return the value shown in Figure 10-4:

9.25

Figure 10-4: The 25th percentile figure

So, any numbers in our Numbers table that are below this value are said to
be in the 25th percentile. This is also equivalent to the first quartile.

If we want to find the remaining quartiles, then we need to find the values for
the 50th percentile and the 75th percentile. We can do this by creating two
more measures using the following expressions:

Numbers 50th Percentile PERCENTILE.EXC ('Numbers' [Value], 0.50)
Numbers 75th Percentile = PERCENTILE.EXC ('Numbers'[Value], 0.75)

This will give us the results shown in Figure 10-5:

5.25 10.50 15.75

Figure 10-5: The 25th, 50th and 75th percentile figures

One thing to note about the percentire.exc function is that the values for the
second parameter must be in the range //(N+1) to N/(N+1), where N is the
number of values in the dataset. So, for example, if the value of the second
parameter for our Numbers table was 0.047, it would generate the error
shown in Figure 10-6:

®

Ses details

Unsupported percentile

The percentile value must be in the range of 1/(N+1).. N/{N+1)
inclusive, where N is the number of data values.

Close

Figure 10-6: Error generated when using an invalid value with the rercentIzE. EXE function

However, if you use the eercenrrre. e function, the value for the second
parameter can be any value between 0 and 1.

Essentially, what the eercenrire.exc function is saying is that there are no
values in the dataset that are below the 4.7th percentile, while the

percENTTLE. Tne function uses a different formula to calculate a number. If
accuracy 1s more important, then it is recommended that you use the
PERCENTILE.ExC function over the eercentize. 1nc function.

The PERCENTILEX.EXC and
PERCENTILEX.INC functions

The syntax for the percentiLEX.ExC function is as follows:
PERCENTILEX.EXC (<Table>, <Expression>, <K>)
The syntax for the percentrzEX. Inc fUnction 1s as follows:

PERCENTILEX.INC (<Table>, <Expression>, <K>)

These functions work much like their standard counterparts, except that, like
all the x functions, these will calculate the value of the percentile by iterating
over the rows of a specified table, evaluating a set of expressions.

For the first parameter, we need to specify the table over which to iterate.
For the second parameter, we need to give the expression that will be
evaluated. For the third—and final—parameter, we need to give the
percentile value (the kth) that we want to calculate, with the value being
between 0 and 1.

Let's demonstrate this, using our Numbers table, by creating a new measure
by using the following expression:

Numbersx10 25th Percentile =
PERCENTILEX.EXC (

Numbers,

[Value] * 10,

0.25
)

What this is doing is calculating the value for the 25th percentile, for the
values in the Numbers table multiplied by 10. In other words, for numbers
between 10 to 200, find the value below which you would find the bottom
25% of the numbers.

This will return the value shown in Figure 10-7:

52.50

Figure 10-7: The 25th percentile figure

Again, with the eercentirex.exc function, the value for the third parameter must
be in the range 1/(N+1) to N/(N+1), where N is the number of values in the
dataset. If you use the rercenriiex. ve function, the value for the third parameter
can be any value between 0 and 1.

The MEDIAN and MEDIANX
functions

The syntax for the vep1an function is as follows:
MEDIAN (<Column>)
The syntax for the vepranx function is as follows:

MEDIANX (<Table>, <Expression>)

The vepran and vep1anx functions will calculate the value of the 50th percentile
of the values in a column or a set of expressions evaluated over a table. They
are equivalent to the percentile functions being used to calculate the 50th
percentile. In fact, we can demonstrate this by creating a new measure, using
the following expression:

|Numbers Median = MEDIAN ('Numbers' [Value])

This will return the median value for the numbers in our Numbers table,
which—as we can see from Figure 10-8—matches the value we got for the
50th percentile in our previous example:

10.50

Figure 10-8: The median figure

The w=nranx function, like the other iterator functions, requires a table for its
first parameter, which it will use to iterate over. For its second parameter, it
requires an expression, which it will evaluate for each row in the table over

which it is iterating. From the dataset it computes, it will then calculate the
value of the median.

Ranking your data

DAX has a couple of functions that enable us to sort and rank data in a table.
The first of these—the ranx.zo function—will calculate a value for the rank of
a number 1n a specified column of numbers.

The RANK.EQ function

The syntax for the raxx.zo function is as follows:
RANK.EQ (<Value>, <ColumnName> [, <Order>])

For the first parameter, we need to specify the value that is to be ranked. For
the second parameter, we need to give the column against which the value
will be ranked. Finally, we can specify an optional order over which the
ranking is to be applied. This can be either ascending (asc) or descending
(pesc). If it 1s not specified, then the default order will be descending.

| Q | It is quite common to use the same column for both the value and the column name
24 parameters.

We can demonstrate the use of the ranx.ro function by adding a new calculated
column to the Numbers table we created in the previous section on working
with percentiles. Create a new column using the following expression:

|Rank of value = RANK.EQ (Numbers[Value], Numbers([Value], ASC)

This will produce the result shown in Figure 10-9:

Value Rank of value

1 1
2 2
2 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20

Figure 10-9: Ranking values in a table with the ranx.zo function

The ranx.z0 1s mostly used for compatibility with Excel and is usually only
used when migrating a formula. The ranxx function provides more flexibility
and is the function that is more often used for ranking data.

The RANKX function

Unlike many of the other iterator x functions, ravkx 1s not just an iterator
version of the rank.ro function. It offers us much more flexibility in how we
can rank our data.

The syntax for the rankx function is as follows:
RANKX (<Table>, <Expression> [, <Value>] [, <Order>] [, <Ties>])

For the first parameter, we need to give a table name or an expression that
returns a table. The second parameter is an expression that will evaluate to a
scalar value. The function will iterate through the table, ordering the values
returned by the expression with a ranking number.

The remaining parameters are all optional. The third parameter is a scalar
DAX expression, whose value will be used to find the ranking. If this
parameter is omitted, then the value of the expression given for the second
parameter will be evaluated for the current row and used instead. In practice,
the third parameter 1s usually omitted, unless there is a special reason to use
it.

The fourth parameter defines the order over which the ranking is to be
applied. This can either be ascending (asc) or descending (pesc). If it is not
specified, then the default order will be descending.

Finally, the fifth optional parameter defines how the ranking for tied values
will be treated. Specifying ense for this parameter will mean that the next
rank value, after a tie, will be the next rank value in the sequence. For
example, you may have a ranking sequence that looks like this: 1,2,3,3,3,4,5.
Specifying sxip for this parameter means that the next rank value, after a tie,
will skip over the count of tied values. For example, you may have a ranking
sequence that looks like this: 7,2,3,3,3,6,7.

Slightly confusingly, the zaxx function can be used in expressions that create
both calculated columns and measures. We'll start our practical examples by
creating a new calculated column for the Product table that ranks values for
the Total Sales measure for a row against all the other rows in the Product
table. The following expression can be used to create the new column:

RANKX Total Sales by Product =
RANKX (

'Product’,

[Total Sales]

We can see the result of adding this new column in Figure 10-10:

Product Name Total Sales RANKX Total Sales by
Product

Proseware Projector 1080p DLP86 White £51,901,056.27 1
Proseware Projector 1080p DLP86 Silver £51,484,223.07 2
Proseware Projector 1080p DLP86 Black £49,266,460.53 3
Proseware Projector 1080p LCD86 White £47,504,870.55 4
Contoso Projector 1080p X380 White £47,499,546.15 5
Proseware Projector 1080p LCD86 Black £46,883,476.35 6
Contoso Projector 1080p X980 Silver £46,779,948.50 7
Contoso Projector 1080p X980 Black £45,935,343.00 3
Proseware Projector 1080p LCD86 Silver £45,886,757.85 9
Fabrikam Independent Filmmaker 1" 25mm X400 Blue £31,744,337.40 10
Fabrikam Independent Filmmaker 1/2" 3mm X300 Black £28,884,788.40 11
Adventure Works Desktop PC1.80 ED182 Brown £25,815,220.92 12
Adventure Works Laptop19W X1980 White £25,499,421.96 13
Adventure Works Laptop19W X1980 Blue £25,354,960.17 14
Adventure Works Desktop PC1.80 ED182 White £25,298,914.21 15
Fabrikam Independent Filmmaker 2/3" 17mm X100 Black £25,212,825.00 16
Adventure Works Desktop PC1.80 ED182 Silver £25,047,404.52 17
Fabrikam Laptop19W M9800 Black £25,022,218.76 18
Adventure Works Desktop PC1.80 ED182 Black £24,550,173.98 19
Fabrikam Laptop19 M9000 Black £24,280,404.62 20
Adventure Works Laptop19W X1980 Silver £24,083,654.85 21
Adventure Works Laptop19W X1980 Red £23,689,681.14 22

Figure 10-10: Ranking values in a table with the ranxx function

The new column ranks each of the products based on the value in the Total
Sales column, with the product with the highest value in the Total Sales
column ranked as 1. This is because, by default, the ranxx function will order
those products with a higher total sales amount with a lower ranking.

We can change this order by specifying the order parameter. Let's amend the
definition of the expression we used to create our calculated column by
adding zsc as the fourth parameter, like this:

RANKX Total Sales by Product =
RANKX (

'Product’',

[Total Sales],,

ASC

This will give us a new result, which can be seen in Figure 10-11:

Product Name Total Sales RANKX Total Sales by
Product
-

Proseware Projector 1080p DLP86 White £51,801,056.27 1690
Proseware Projector 1080p DLP86 Silver £51,484,223.07 1689
Proseware Projector 1080p DLP86 Black £49,266,460.53 1688
Proseware Projector 1080p LCD86 White £47,504,870.55 1687
Contoso Projector 1080p X980 White £47,499,546.15 1686
Proseware Projector 1080p LCD86 Black £46,883,476.35 1685
Contoso Projector 1080p X980 Silver £46,779,948.90 1684
Contoso Projector 1080p X980 Black £45,935,343.00 1683
Proseware Projector 1080p LCD86 Silver £45,886,757.85 1682
Fabrikam Independent Filmmaker 1" 25mm X400 Blue £31,744,337.40 1681
Fabrikam Independent Filmmaker 1/2" 3mm X300 Black £28,884,788.40 1680
Adventure Works Desktop PC1.80 ED182 Brown £25,815,220.92 1679
Adventure Works Laptop19W X1980 White £25,499,421.96 1678
Adventure Works Laptop19W X1980 Blue £25,354,960.17 1677
Adventure Works Desktop PC1.80 ED182 White £25,298,914.21 1676
Fabrikam Independent Filmmaker 2/3" 17mm X100 Black £25,212,825.00 1675
Adventure Works Desktop PC1.80 ED182 Silver £25,047,404.52 1674
Fabrikam Laptop19W M9800 Black £25,022,218.76 1673
Adventure Works Desktop PC1.80 ED182 Black £24,550,173.98 1672
Fabrikam Laptop19 M9000 Black £24,280,404.82 1671
Adventure Works Laptop19W X1980 Silver £24,083,654.85 1670
Adventure Works Laptop19W X1980 Red £23,689,681.14 1669

Figure 10-11: Ranking values in a table with the ranxx function in ascending order

Now, the products with higher values in the Total Sales column are ranked
with a higher ranking.

Although we don't have any tied rankings in the preceding screenshot, if we
did, by default, they would skip rankings. If we didn't want any gaps in the
rankings, then we could override the default behavior by specifying pense for
the fifth optional parameter.

Next, we are going to look at how you we create a calculated column that
enables us to apply rankings within a subgroup. To do this, we need to make
use of the rrr1er function.

Let's create a new calculated column in the Product table by using the
following expression:

RANKX Total Sales by Product (by Subgroup) =
RANKX (
FILTER (
'Product’',
'Product' [Manufacturer] = EARLIER('Product' [Manufacturer])
) 14
[Total Sales]

The use of the rrirer function adds an additional row context to the
calculation, based on the value in the Manufacturer column. The zavnxx
function is now only evaluating rows in the Product table where the value of
the Manufacturer is equal to the value of the Manufacturer of the current row.

We can see the result of this new column in Figure 10-12:

Manufacturer Total Sales RANKX Total Sales by

Product (by Subgroup)

Fabrikam SLR Camera 35" M358 Pink £2,928,902.24 155
Fabrikam Social Videographer 2/3" 17mm E100 Black £2,922,328.00 156
Fabrikam Social Videographer 2/3" 177mm E100 Crange £2,803,043.20 157
Fabrikam Laptop®.9W EQ880 Silver £2,556,136.80 158
Fabrikam Social Videographer 2/3" 17mm E100 White £2,534,280.50 159
Fabrikam Social Videographer 2/3" 17mm E100 Blue £2,338,087.16 160
Fabrikam Laptop8.9 MO801 Silver £1,356,403.89 161
Fabrikam SLR Camera M148 Gold £1,077,389.80 162
Fabrikam Laptop8.9 EO800 Silver £538,713.60 163
Contoso, Ltd
Contoso Projector 1080p X980 White £47,495,546.15 1
Contoso Projector 1080p X980 Silver £46,779,948.90 2
Contoso Projector 1080p X980 Black £45,935,343.00 3
Contoso Projector 720p M621 White £20,212,497.27 4
Contoso Projector 720p M&21 Silver £20,068,391.52 5
Contosa Home Theater System 7.7 Channel M1700 Black £19,803,696.54 &
Contoso Projector 720p M621 Black £19,480,799.70 7
Contoso Home Theater System 7.1 Channel M1700 Brown £19,413,759.75 g
Contoso Home Theater System 7.1 Channel M1700 White £19,086,278.82 9
Contoso Home Theater System 7.1 Channel M1700 Silver £18,633,911.17 10
Contoso Projector 720p M620 White £14,527,275.06 11
Contoso Projector 720p M620 Black £14,49¢,042.45 12
Contoso SLR. Camera X143 Grey £13,933,838.86 13
Contoso SLR Camera X144 Silver Grey £13,790,961.21 14

Figure 10-12: Applying rankings using subgroups

As we can see, the new column now gives a ranking that is reset when the
value of the Manufacturer column changes.

Now, we are going to move on to looking at using the zzuxx function with a
measure. We'll start by creating a simple measure that ranks products by the
value of total sales, by the manufacturer. We can do this by creating a new
measure with the following expression:

RANKX Products by Manufacturer =
RANKX (
ALL ('Product' [Manufacturer]),
[Total Sales],,
ASC,
Dense

With this measure, we have also specified that the order should be ascending
and that tied values should use a pense ranking. This means that manufacturers
with a higher value for total sales will be ranked with a higher-ranking
number. It also means that where there are tied values, the next rank number,
after a tie, will be the next rank number in the sequence.

The result of this expression can be seen in Figure 10-13:

Manufacturer Total Sales RAMKX Products by Manufacturer
Fabrikam, Inc. £1,874,455,854.35 10
Contoso, Ltd £1,497,920,768.36 9
Adventure Works £1,089,734,248.74 8
Proseware, Inc. £954,540,220.53 7
Wide World Importers £811,532,851.91)
The Phone Company £673,525,407.96 5
A. Datum Corporation £619,803,753.56 -
Southridge Video £471,653,445.03 3
Litware, Inc. £327,894,810.44 2
MNorthwind Traders £20,163,003.97 1

Figure 10-13: Using the ranxx function with a measure

For this measure, we are making use of the ar. function. In this case, instead
of being used to remove filters from the filter context, as it would when used
with the carcurate function, it is being used to return a table that contains a
distinct list of manufacturers from the Product table. The rawxx function will
then use this to iterate over, using the Total Sales measure to calculate the
order of ranking.

If we now add another column from the Product table to act as a subgroup,
we will find that the rawvxx measure automatically ranks the value of the Total
Sales measure, by Manufacturer, within that subgroup.

This can be seen in Figure 10-14, and 1s when we add the Class column from
the Product table to our visual:

Class Total Sales RAMNKX Products by
Ilr1anufacturer

Deluxe
Fabrikam, Inc. £420,114,104.80 10
Contoso, Ltd £379,160,840.05 9
Proseware, Inc. £375,496,320.92 8
Adventure Works £227126,317.70 7
Wide World Importers £201,039,835.86 6
The Phone Company £197,094,815.33 5
Southridge Video £79416,013.42 4
A. Datum Carporation £71,882,480.30 3
Litware, Inc. £6,606,812.05 2

Economy
Contoso, Ltd £277,868,875.39 10
Wide World Importers £191,553,277.11 9
Fabrikam, Inc. £150,969,141.35 8
Adventure Works £148,905,083.74 7
Southridge Video £129,786,863.57 6
Proseware, Inc. £101,011,593.31 5
A. Datum Corporation £97,045,726.08 4
Litware, Inc. £51,517,141.64 3
The Phaone Company £48,025,341.10 2

Figure 10-14: Using the ranking measure with subgroups

However, if we want to look at ranking based on the combination of values
from the Manufacturer and Class columns, we will need to change the
definition of our measure. We will need to add the Class column from the
Product table to the parameters of the arr function. The following code shows
the expression that's used for our revised measure:

RANKX Products by Class and Manufacturer =
RANKX (
ALL (
'Product’'[Class],
'Product' [Manufacturer]
) r
[Total Sales],

14

ASC,

Dense

The result of this revised measure can be seen in Figure 10-15, where we
now have the ranking for the value of the Total Sales measure applied over
the combination of the Class and Manufacturer columns:

Class Manufacturer Total Sales RANMKX Products by
glass and Manufacturer

Regular Fabrikam, Inc. £1,303,372,608.20 29
Regular Contoso, Ltd £840,891,052.92 28
Regular Adventure Works £713,702,847.29 27
Regular Proseware, Inc. £478,032,306.30 26
Regular A. Datum Corporation £450,875,547.18 25
Regular The Phone Company £428,405,251.53 24
Deluxe Fabrikam, Inc. £420,114,104.80 23
Regular Wide World Importers £418,939,738.94 22
Deluxe Contoso, Ltd £379,160,840.05 21
Deluxe Proseware, Inc. £375,496,320.92 20
Economy Contoso, Ltd £277,868,875.39 19
Regular Litware, Inc. £269,770,856.75 18
Regular Southridge Video £262,450,568.03 17
Deluxe Adventure Works £227,126,317.70 16
Deluxe Wide World Importers £201,039,835.86 15
Deluxe The Phone Company £197,094,815.33 14
Economy Wide World Importers £191,553,277.11 13
Economy Fabrikam, Inc. £150,969,141.35 12

Figure 10-15: Using the revised ranking measure

We could calculate the ranking over additional columns from the Product
table simply by adding them to the parameters of the arr function and then
adding them to our table visual.

Calculating standard deviation and
variance

This group of DAX functions contains several aggregation functions that will
help you to calculate the standard deviation and variance of a population.
There are two variations of each function: one with a suffix of .» and the other
with a suffix of .s. The functions that end with .» calculate the result using a
formula that is based on the assumption that the data represents the entire
population. Those ending with .s use a slightly different formula that is based
on the assumption that the data represents a sample of the entire population.

As with the other functions in this group, there are also versions of the
functions that work with a single column and versions that iterate over a table,
evaluating an expression. Let's start by looking at the four functions that will
help you to calculate standard deviation.

A detailed explanation of standard deviation is beyond the scope of this book.
However, if you would like to find out more about it, check out the Wikipedia page on
Sta}’ldard deviation at https://en.wikipedia.org/wiki/standard deviation.

The syntax for the sroev.» function is as follows:
STDEV.P (<ColumnName>)

The syntax for the sroev.s function is as follows:
STDEV.S (<ColumnName>)

The syntax for the sroevx.» function is as follows:
STDEVX.P (<Table>, <Expression>)

The syntax for the sroevx.s function is as follows:

STDEVX.S (<Table>, <Expression>)

https://en.wikipedia.org/wiki/standard_deviation

To demonstrate the use of these standard deviation functions, we are going to
create some new measures, based around the sales quantity. Create these by
using the following expressions:

Avg Sales Quantity = AVERAGE (Sales[Sales Quantity])
Min Sale Quantity = MIN (Sales[Sales Quantity])

Max Sales Quantity = MAX (Sales[Sales Quantity])
StdDevP Sales Quantity = STDEV.P (Sales[Sales Quantity])
StdDevS Sales Quantity = STDEV.S (Sales[Sales Quantity])

Now, we can add these to a table visual, along with the Product Name column
from the Product table. This gives us the result shown in Figure 10-16:

Product Mame Avg Sales Quantity | Min Sale Quantity Max Sales Quantity | StdDevP Sales Quantity | StdDevs Sales Quantity
A, Datum Advanced Digital Camera M300 Azure 1218 g 32 5.10 5.10
A, Datum Advanced Digital Camera v k 1210 g TE 5.26 526
A, Datum Advanced Digital Camera v Green 1244 g 60 591 5.91
A, Datum Advanced Digital Camera v 12.26 g T2 5.67 567
A, Datum Advanced Digital Camera v 12.35 g 72 5.89 5.89
A, Datum Advanced Digital Camera v ik 1216 g 108 5.66 5.66
A, Daturn Advanced Digital Camera v 12.02 g >4 5.04 5.05
A, Datum All in One Digital Camera M200 Azure 1247 g 40 514 515
A, Daturn All im One Digital Camera M200 Black 12.25 g T2 576 5786
A, Daturn All in One Digital Camera M200 Green 12.31 g TE 5.36 5.86
A, Datumn All in One Digital Camera M200 Grey 1249 g g2 731 73

A, Datumn All in One Digital Camera M200 Orange 12.28 g 32 518]
A, Daturn All im One Digital Camera M200 Pink 1211 g 2 5.48 5.48
A, Datum All in One Digital Camera M200 Silver 1211 g)] 513 513
A, Datumn Brigge Digital Camera M300 Azure 12,10 g 32 5.08 5.09
A, Datum Bridge Digital Camera M300 Black 12.27 g 65 5.40 540
A, Datum Bridge Digital Camera M300 Green 12.26 g 72 574 575
A, Datum Bridge Digital Camera M300 Grey 12.28 g 104 6.02 6,02
A, Datumn Bridge Digital Camera M300 Orange 211 g TE 542 542
A, Datum Bridge Digital Camera M300 Pink 1231] 104 6.03 603
A, Datum Bridge Digital Camera M300 Sihver 12.21 g 39 4,82 4,82
A, Datumn Compact Digital Camera M200 Azure 11.35 4 TE 911 9.11
A, Datumn Compact Digital Camera M200 Green 145 4 72 9.27 927
A, Datum Compact Digital Camera M200 Grey 11.03 4 TE 8.74 574
A, Datumn Compact Digital Camera M200 Orange 11.53 4] 9.21 922
A, Datum Compact Digital Camera M200 Pink 11.30 4 96 .21 92

A, Daturm Compact Digital Camera M200 Silver 11.19 4 TG 8.4% 549
A, Datum Consumer Digital Camera E100 Azure 11.54] 104 5.53 554
A, Datum Consumer Digital Camera E100 Black 11.56 [T 574 575
Total 16.17 4 2880 39.35 39.35

Figure 10-16: Table using standard deviation functions

You will see that, in some cases, there is a slight variation in the results
calculated by the stoev.» and stoev.s functions. The stoev. s function may
calculate a higher standard deviation than the sroev.» function.

Now, let's turn our attention to the functions that will calculate variance.

The syntax for the var.s function is as follows:
VAR.S (<columnName>)

The syntax for the vaz.» function is as follows:
VAR.P (<columnName>)

The syntax for the varx.s function is as follows:
VARX.S (<table>, <expression>)

The syntax for the varx.» function is as follows:
VARX.P (<table>, <expression>)

We can demonstrate the use of these variance functions by creating a couple
more measures, based on sales quantity. Create these new measures by using
the following expressions:

VarP Sales Quantity VAR.P (Sales[Sales Quantity])
VarS Sales Quantity = VAR.S (Sales[Sales Quantity])

We can then add these to the table we created in this example, which will give
us the result shown in Figure 10-17:

Product Name Avag Sales Quantity Min Sale Quantity | Max Sales Quantity | StdDevP Sales Quantity | StdDevS Sales Quantity | VarP Sales Quantity | VarS Sales Quantity

A, Datum Advanced Digital Camera M300 Azure 1218 8 32 510 310 26,02 26,03
A, Datum Advanced Digital Camera M300 Black 1210 8 T8 526 5.26 27.64 27.66
A, Datum Advanced Digital Camera M300 Green 1244 8 &0 5o 5.01 34.88 34.90
A, Datum Advanced Digital Camera M300 Grey 12.26 8 T2 567 5.67 3211 3213
A, Datum Advanced Digital Camera M300 Orange 1235 8 72 5.eg 5.59 3472 34.74
A, Datum Advanced Digital Camera M300 Pink 12.16 8 108 5.66 5.66 3203 32.05
A, Datum Advanced Digital Camera M300 Silver 12.02 8 54 504 5.05 25,44 25,45
A, Datum All in One Digital Camera M200 Azure 1247 8 40 514 515 2842 26.49
A, Datum All in One Digital Camera M200 Black 12.25 8 Tz 5.76 576 33.21 3323
A. Datum All in One Digital Camera M200 Green 12.31 8 T8 586 5.56 3432 34.34
A, Datum All in Cne Digital Camera M200 Grey 1249 8 182 731 T3 3348 53.4%
A, Datum All in One Digital Camera M200 Orange 12.28 8 52 518 518 26.81 26.83
A, Datum All in One Digital Camera M200 Pink 1211 8 TZ 5.45 348 30,06 30.08
A, Datum All in One Digital Camera M200 Sitver 1211 8 a0 513 513 26,28 26,30
A, Datum Bridge Digital Camera M300 Azure 1210 8 32 5.08 5.09 2385 25.87
A, Datum Bridge Digital Camera M300 Black 12.27 8 63 5,40 340 2919 29.21
A, Datum Bridge Digital Camera M300 Green 12.26 8 72 574 575 33.00 33.02
A, Datum Bridge Digital Camera M300 Grey 12.26 8 104 6.02 6.02 36.21 36.23
A, Datum Bridge Digital Camera M300 Orange 1211 8 T8 542 542 29.36 29,38
A, Datum Bridge Digital Camera M300 Pink 1231 8 104 6.03 6.03 3633 36.35
A, Datum Bridge Digital Camera M300 Silver 12.21 8 39 482 4,52 2319 23.24
A. Datum Compact Digital Camera M200 Azure 11.35 4 T8 an a.11 82.90 82.95
A, Datum Compact Digital Camera M200 Green 1148 4 7z 9.27 9.27 839 83.96
A, Datum Compact Digital Camera M200 Grey 11.03 4 T8 &8.74 .74 76,32 76,36
A, Datum Compact Digital Camera M200 Orange 1153 4 &0 9.21 922 3491 4,96
A, Datum Compact Digital Camera M200 Pink 11.30 4 96 9.21 9.21 3475 84.80
A, Datum Compact Digital Camera M200 Silver 11.19 4 78 8.49 849 72.08 7213
A. Datum Consumer Digital Camera E100 Azure 11.34 [104 553 354 30.63 30.65
A, Datum Consumer Digital Camera E100 Black 11.56 B 78 574 575 3299 330
Total 1617 4 2880 39.35 39.35 1,548.45 1,548.45

Figure 10-17: Table with variance functions added

As with the standard deviation functions, the variance functions will calculate
the variance slightly differently. The vzz.s function may calculate a higher
variance than the var.» function.

Summary

In this chapter, we looked at the group of DAX functions used to help us
calculate statistical data. We started with a look at the complete list of the
functions 1n this group, along with a brief description of each. We then moved
on to look in more detail at some of the more commonly used functions in this

group.

We looked at those functions that can be used to calculate averages,
percentiles, and to rank our data, all while working through some examples
of each function being used. We rounded off this chapter by taking a brief
look at those functions that can be used to calculate standard deviation and
variance.

In the next chapter, we will move beyond the different groups of DAX
functions and take a look at some examples of DAX patterns.

Working with DAX Patterns

In this chapter, we're going to look at the concept of DAX patterns. As with
other software design patterns, a DAX pattern consists of a template that
forms the basis of a reusable solution to a commonly encountered problem.

We'll start with an introduction to the Quick Measures feature in Power Bl
Desktop. As the name suggests, this is a quick and easy way to create a DAX
measure, without needing to know any DAX code. Behind the scenes, it uses
predefined DAX patterns that are completed using the responses you provide
through the Quick Measures dialog.

Having explored how the Quick Measures feature works, we'll look at some
examples of the measures that are available by using them with hands-on
examples.

The chapter is broken into the following sections:

e Introducing Power BI Quick Measures
Calculating cumulative totals

Binning data using segmentation
Comparing equivalent periods
Working with mathematical patterns

Introducing Power BI Quick
Measures

In software engineering, a coding pattern refers to a coding solution in the
form of a template or partially completed code that can be used repeatedly in
different scenarios. It provides a way to develop software using a tried-and-
tested approach.

The 1dea of DAX patterns also centers around the concept of reusable
templates that contain a set of DAX expressions. There are plenty of
examples of DAX patterns available on the internet, but the easiest way to
get started is through the Quick Measures feature in Power Bl Desktop.

If you want a great example of a site that provides a wide range of DAX patterns,
check out the following site: netps://waw.daxpatterns. con/.

The Quick Measures feature in Power BI Desktop provides a great way to
quickly create commonly used and powerful measures in your Power Bl
report. Better still, like all measures, they are built using a set of DAX
expressions that you can access and modify to meet your exact requirements.
They are also created using proven DAX code, which means they are a
reliable way to start creating DAX measures.

without needing to know any DAX, understanding how the code they generate

9 Although the idea behind Quick Measures is that you can start creating measures
works does require a good level of DAX knowledge.

At the time of writing this book, the Quick Measures feature contains patterns
that fall within the following categories:

Aggregations per category
Filters

Time intelligence

Totals

Mathematical operations

https://www.daxpatterns.com/

o Text

Another great thing about the DAX patterns that are created by Quick
Measures is that the DAX code they generate can be reused in Excel Power
Pivot, SQL Server Analysis Services (SSAS) Tabular, and anywhere else
that DAX is used.

Creating your first quick measure

There are a couple of ways you can get started with creating a quick measure
in Power BI Desktop, as follows:

1. Right-click on any item in the Fields pane and select New quick
measure from the context menu that appears, as shown in Figure 11-1:

Visualizations > Fields >
‘ L == i L searc
iy H ~ [@ DAX Measures
v [F] (1B % ALL Sales
_Y = oh Check
® m 5= Mew measure

MNew column

New guick measure

Value
Add data fields here Ren [New quick measure
Delete
Drillthrough Hide
Cross-report View hidden
Unhide all
off O—
Collapse all
Keep all filters Eupand 2l
2L Add to filters ,
Add drillthrough fields here Add to drillthrough

]
[JE First Sales Dat...
OB Max Sales Qu...
B Min Sale Qua...
CJBE RANKX Produ...

First Sales Date

Figure 11-1: Create a new quick measure from the field context menu in Power BI Desktop

2. Alternatively, click on the New Quick Measure button on the
Calculations section of the Home ribbon, as shown in Figure 11-2:

L Mew Measure [_]
=5 s

JNEW Column
Manage - Publish
Relationships | g Mew Quick Measure

Relationships Calculations Share

MNew Quick Measure

Create a new gquick measure

Figure 11-2: Create a new quick measure from the Calculations section of the Home ribbon in Power BI Desktop

3. This will bring up the Quick Measures dialog, where you will be able
to select, from a drop-down menu, the type of calculation you want to
use to create your new measure, along with the fields you want to use
with the calculation.

4. Figure 11-3 shows the Quick Measures dialog. On the left-hand side is
the list of available calculations, while on the right-hand side is the list
of the tables and fields available from your data model:

Quick measures

Calculation Fields

Select a calculation 2 search

Select a calculation -

Aggregate per category @ DAX Measures
.-'-we.rage per category mE Date Tble
Variance per categorny
M.ax per categaory . Diste
Min per category
Weighted average per category Day Name

Filters % Day Mumber
Filtered value Month Name

Difference from filtered value

Percentage difference from filtered value £ Manth Number

Sales frem new customers Quarter Name
Time intelligence ¥ Cuarter Number
Year-to-date total Week Name
CQuarter-to-date total
Month-to-date total I Week Number
Year-over-year change = Year
Cuarter-over-gquarter change
Month-over-month change =S
Relling average ~ B Product
b Available For Sale Date
Brand
Class
Calor
Manufacturer
Product Description
Daon't see the calculation you want? Post an idea oK Cancel

Figure 11-3: The Quick measures dialog

5. To create a quick measure, select a calculation from the list on the left-
hand side. In the example shown in Figure 11-4, we have picked the
Year-to-date total measure from the Time intelligence group:

Quick measures

Calculation Fields

Year-to-date total r /O Search

Calculate the total of the base value, starting from the
beginning of the current year, Learn more
= Date

Base valus @ Day Name

= Day Mumber
Sum of Sales Amount v

Month Mame

Date © = Month Number

Cuarter Mame
Date s

= Quarter Mumber
Week Name

% Week Number

= Year

B Mumbers
B Product
B Gales

Discount Amount
Discount Guantity
Return Amount
Return Quantity
Sales Amount

Sales Quantity

MMM MMM

Don't see the calculation you want? Post an idea OK

Figure 11-4: Creating a y ear-to-date measure through the quick measures dialog

6. For this measure, we'll populate the Date parameter with the Date field
from the table called Date table.

7. For the Base value parameter, we'll use the Sales Amount from the
Sales table. The Sales Amount will be aggregated using the sou function
by default, but you can select other aggregations.

8. Click on the OK button to create the new quick measure.

Once the measure is created, you will have an example of an expression that
follows a defined code pattern:

Date Sales Amount Sales Amount running total in Date 4
01,/01/2007 00:00:00 £6,085,83018 £6,085,838.18
02/01/2007 00:00:00 £6,270,657.17 £12,356,496.35
03/01/2007 00:00:00 £6,006,024.11 £18452,52046
04/01/2007 00:00:00 £5,979,164.13 £24.431.684.59
05/01/2007 00:00:00 £3,926,384.02 £30,338,268.61
06/01/2007 00:00:00 £6,150,610.75 £36,508,879.36
07/01/2007 00:00:00 £6,517,040.34 £43,025,919.70
08/01/2007 00:00:00 £5,856,724.52 £48,882 644,22
09/01/2007 00:00:00 £6,184 82044 £33,067 404,00
10/01/2007 00:00:00 £6,612,222.96 £61,679,6587.61
11/01/2007 00:00:00 £6,524046.81 £68,203,73442
12/01/2007 00:00:00 £5,889,201.15 £74,092,935.57
13/01/2007 00:00:00 £6,330,346.71 £80,423 282,28
14/01/2007 00:00:00 £3,945,346.50 £86,368,628.88
15/01/2007 00:00:00 £6,385,077.45 £02,753,706.32
16/01/2007 00:00:00 £6,173,139.29 £05,926,845.61
17/01/2007 00:00:00 £6,709,343.04 £105,636,380.55
18/01/2007 00:00:00 £6,143,14045 £111,779,530.00
19/01/2007 00:00:00 £6,034,360.92 £117,814,090.93
20/01/2007 00:00:00 £6,354,141.60 £124,168,238.53 "
Total £8,341,224,364.83 £8,341,224,364.83

Figure 11-5: Adding the year-to-date quick measure to a table

Figure 11-5 shows this measure added to a table that also shows the total
Sales Amount for each day. As you can see, our new measure gives us a way
of calculating a running total. In the next section, we'll be looking at the code
behind this measure, along with some other examples of code that have been
created following a DAX pattern.

Calculating cumulative totals

In the previous section of this chapter, we looked at creating a quick measure
for year-to-date totals. The DAX expression that is created for this measure is
an example of the Cumulative Total pattern. In this case, the pattern is used to
create a running total of the Sales Amount field by the Date field.

The following code is the DAX expression that was created for this example:

Sales Amount running total in Date =

CALCULATE (
SUM ('Sales'[Sales Amount]),
FILTER (
ALLSELECTED ('Date Table' [Date]),
ISONORAFTER ('Date Table'[Date], MAX ('Date Table'[Date]), DESC)

)

e The expression works by using the rrirer and rsonorarrer functions to
return a table of dates that are less than or equal to the date of the current
Tow.

e The measure then calculates the sum of Sales Amount for all sales made
on dates that are equal to those returned by this table.

The following code block shows a very similar pattern that could be used to
calculate the same result, but is slightly easier to understand:

Sales Amount running total in Date 2 =

CALCULATE (
SUM ('Sales'[Sales Amount]),
FILTER (
ALLSELECTED ('Date Table' [Date]),
'Date Table'[Date] <= MAX ('Date Table' [Date])

)

)
8 The Cumulative Total pattern we are following here requires that your data model

contains a Date Table that is correctly marked as a date table. The date referred to in
the pattern must be the date column from that Date Table.

Although not strictly necessary, we can enhance the pattern to include a check
that will prevent totals being displayed for any dates that are greater than any
of the dates in the Sales table, as follows:

Sales Amount running total in Date 3 =
IF (
MIN ('Date Table' [Date])
<= CALCULATE (MAX (Sales[SalesDateKey]),
CALCULATE (
SUM ('Sales'
FILTER (
ALLSELECTED ('Date Table'[Date]),
'Date Table' [Date] <= MAX ('Date Table'

ALL (Sales)),

[Sales Amount]),

[Date])

Figure 11-6 shows the table of sales by date extended to include our two
additional measures:

Date Sales Amount Sales Amount running total in Date | Sales Amount running total in Date 2 | Sales Amount running total in Date 3 "
21/12/2008 00:00:00 £7,192,199.87 £5,268/672,851.09 £8,268,672,851.0883 £85,268/672,851.0889
22/12/2008 00:00:00 £7,287,809.94 £5,273,970,661.03 £8,275,970,661.0238 £5,273970,661,0239
23/12/2008 00:00:00 £7,166,257.40 £5,283,13691843 £5,283,136,9154294 £5,283,136 9184294
4/12/2008 00:00:00 £7291,113.96 £5290423,032.39 £8,290,425,032.3909 £5,290428,032.3909

25/12/2008 00:00:00

26/12/2008 00:00:00

£7,131,232.46
£7,263444.05

£85,297,358,264.85
£85,304,822 708,20

£8,297,539,264.8509

£8,304,822,708.5995

£5,297 539 264.8309

£5,304 822 7085999

27/12/2009 00:00:00 £7,244 858,75 £8,312,067,567.65 £8,312,067,567.6495 £8,312 067 567.6499
28/12/2008 00:00:00 £6,958,378.37 £5319,025,946.02 £5,319,025,346.0195 £5,319,023 3460159
29/12/2008 00:00:00 £7,514,736.49 £85,326,340,702.51 £8,326,540,702.5034 £5,326, 3407025034
30/12/2009 00:00:00 £7,175,234.65 £8333,715,937.19 £5,333,715,937.1854 £5,333715,937.1834
31/12/2009 00:00:00 £7,506,427.65 £5341,224 364,83 £5,341,224 5845324 £5,341,224 3p4.5324
01/01/2010 00:00:00 £5,341,224 364,53 £5,341,224 5845324
02/01/2010 00:00:00 £5341,224 364,83 £5,341224 564.5324
03/01/2010 00:00:00 £5,341,224 364,53 £5,341,224 5845324
04/01/2010 00:00:00 £5,341,224 364,83 £5,341,224 5045324
05/01/2010 00:00:00 £5,341,224 364,53 £5,341224 384.5324
06/01/2010 00:00:00 £5341,224 364,83 £5,341,224 5845324
07/01/2010 00:00:00 £5,341,224 364,53 £5,341,224 5045324
08/01/2010 00:00:00 £5,341,224 3p4.83 £5,341,224 5045324
08/01/2010 00:00:00 £5341,224 364,53 £5,341,224 5845324

"
Total £8,341,224,364.83 £8,341,224,364.83 £8,341,224,364.8324 £8,341,224,364.8324

Figure 11-6: Table showing additional versions of year-to-date measures

As you can see, unlike the measures we created using the first two versions of
the pattern, our third measure does not repeat the cumulative total when the
dates go beyond the last date for which we have sales data in the Sales table.

Binning data using segmentation

Next, we are going to look at a DAX pattern that can be used to create a
calculated column to segment data into different groups. Typical examples
include age groups, product groups, and price banding. This process is also
known as value binning, and it is particularly useful when you want to

visualize data using histograms.

In this example, we are going to create a new column in the Products table that
will group products based on the value of the Unit Price field.

The following code is the DAX expression for the new calculated column:

Unit Price Segment =
SWITCH (
TRUE (),
'"Product' [Unit Price
'Product' [Unit Price
'Product’
'Product’
'Product’

[Unit Pric
[
[
'"Product' [Unit Price
[
[
[

D

Unit Pric
Unit Pric

(0]

D

'"Product' [Unit Price
'"Product’' [Unit Price
'Product’
"900+"

Unit Price

AN AN AN AN AN AN A A

100,
200,
300,
400,
500,
600,
700,
800,
%00,

"0-99",
"100-199",
"200-299",
"300-399",
"400-499",
"500-599",
"600-699",
"700-799",
"800-899",

This pattern uses the swrrcs function to create the groupings. Figure 11-7
shows the number of products in each group as a histogram:

Count of Products by Unit Price Segment
300

300
200
| III_-.

100-199 200-259 300-3599 400-499 500-599 600-699 T00-79 GO0+

Figure 11-7: Binning products by price groups

In this example, the segments display in the correct order. However,
depending on the names of your segment groups, you may also need to create
an additional column to sort the segments by. So, for example, we might create
a unit price band that consists of three segments: Low, Medium, and High.

The following DAX expression would create the segment column:

Unit Price Segment =

SWITCH (
TRUE (),
'"Product’' [Unit Price] < 200, "Low",
'Product' [Unit Price] < 600, "Medium",
"High"

When used 1n a visual, these groups would not display in the correct order. To
correct this, we need to create a segment sorting column. The following DAX
expression can be used to create this column:

Unit Price Segment Sort =

SWITCH (
TRUE (),
'"Product' [Unit Price] < 200, 1,
'"Product' [Unit Price] < 600, 2,

)

The segment column could then be configured to sort by the segment sorting
column so that it displays in the correct order when used with visuals in
reports.

Comparing equivalent periods

We've already looked at some of the time intelligence functions that are
available in the DAX language. However, in this section, we are going look
at how these—and other—functions can be applied to create a range of date
and time patterns.

Comparing previous periods

For the first set of date patterns, we are going to look at some DAX
expressions to create measures that will compare values over equivalent
periods. The first of these will give the total sales quantity for the same
period of the previous year.

The following expression will create a measure called Sales Quantity PY that
will give the total sales quantity for the equivalent date in the previous year:

Sales Quantity PY =

CALCULATE (
SUM (Sales([Sales Quantity]),
SAMEPERIODLASTYEAR ('Date Table' [Date])

)

Figure 11-8 shows this measure being used to create a graph showing a
comparison of sales quantity with the same period for the previous year:

Comparison of Year on Year Sales Quantity

®sales Quantity @cale: Quantity PY

1.1M
1.0M
0.omM

0.2M

January February March Apri May Jumne July August September October Movember December

Figure 11-8: Comparison of sales quantity with the same period for the previous year

e The Sales Quantity PY measure makes use of the saverertoprasryear time
intelligence function to obtain the date from the previous year.

e However, this does restrict our comparison capability to the previous
year only.

e If we want to go back beyond the previous year with our comparisons,
then we need to use a pattern that utilizes the pareapp function instead.

The following expression will create a measure called Sales Quantity PY + 1
that will give the total sales quantity for the equivalent date 2 years
previously:

Sales Quantity PY + 1 =

CALCULATE (
SUM (Sales([Sales Quantity]),
DATEADD ('Date Table'[Date], -2, YEAR)

)

As we will see with the next two examples, by simply changing the interval
type and the number of intervals through the parameters of the pareanp function,
we can use this as a pattern to create measures that will calculate the values
for previous quarters and previous months.

For example, the following expression will create a measure called Sales
Quantity PQ that gives the total sales quantity for the equivalent date in the
previous quarter:

Sales Quantity PQ =
CALCULATE (

SUM (Sales([Sales Quantity]),

DATEADD ('Date Table'[Date], -1, QUARTER)
)

Figure 11-9 illustrates how these measures can be used to compare values
against equivalent periods of time:

Year | Quarter Name Sales Quantity | Sales Quantity PQ | Sales Quantity PY

2007 Q1 2,373,754

2007 Q2 3,222,875 2,373,754

2007 Q3 2,943,359 3,222,875

2007 Q4 3,311,940 2,943,359

2008 Q1 2,397,546 3,311,240 2,373,754
2008 Q2 2,791,503 2,397,546 3,222,875
2008 Q3 3,004,085 2,791,503 2,943,359
2008 Q4 3,077,267 3,004,083 3,311,940
2009 Q1 2,941,906 3,077,267 2,397,546
2009 Q2 3,467,389 2,941,906 2,791,503
2009 Q3 3,678,532 3,467,389 3,004,083
2009 Q4 3,600,256 3,678,532 3,077,267
Total 36,900,410 33,210,154 23,122,327

Figure 11-9: Using measures to compare sales quantity over different periods of time

Let's complete our set of equivalent period measures using this pattern by
creating a measure to calculate the total sales quantity for the equivalent date
in the previous month, as follows:

Sales Quantity PM =

CALCULATE (
SUM (Sales[Sales Quantity]),
DATEADD ('Date Table' [Date], -1, MONTH)

o Unfortunately, when it comes to comparing values for weekly periods,
this pattern will not work since the available interval parameter options
are days, months, quarters, and years.

e There is no interval option for weeks. Therefore, if we want to compare
values against weeks, then the pattern we need to use will be more
complex.

The following expression uses a pattern for comparing the value of sales
quantity with the previous week:

Sales Quantity PW
VAR CurrentWeek =
SELECTEDVALUE ('Date Table' [Week Number])
VAR CurrentYear =
SELECTEDVALUE ('Date Table' [Year])
VAR MaxWeekNumber =

CALCULATE (
MAX ('Date Table' [Week Number]),
FILTER (ALL ('Date Table'), 'Date Table'[Year] = CurrentYear)

)
RETURN

SUMX (
FILTER (
ALL ('Date Table'),
IF (
CurrentWeek = 1,
'Date Table' [Week Number]
&& 'Date Table' [Year]
'Date Table' [Week Number]
&& 'Date Table'[Year]
)
)I

MaxWeekNumber
CurrentYear - 1,
CurrentWeek - 1
CurrentYear

CALCULATE (SUM (Sales[Sales Quantity]))

This pattern starts by setting variables for the current week, the current year,

and the number of weeks in the current year, based on the row context. It then
calculates the sales quantity for the previous week in the same year, unless it
i1s week 1. If it is week 1, it calculates the sales quantity for the last week

(maxweerumver) Of the previous year.

This completes the set of previous period comparison patterns. Next, we will
look at how we can calculate the period-on-period percentages.

Comparing the period-on-period
percentages

Now that we have some measures to compare values over equivalent
periods, we need a pattern to allow us to calculate the percentage difference
between periods. To help us with this, there are a set of quick measures in
the time intelligence group that will allow us to calculate the following:

e Year-over-year change
e Quarter-over-quarter change
e Month-over-month change

Let's start with the first option, to calculate the year-over-year percentage
change. If we provide the Sales Quantity from the Sales table as the base
value and Date from Date Table and specify 1 for the period, it will generate
DAX code that we can use for our pattern.

The following expression will create a measure called Sales Quantity
YoY%. This will give the percentage change between the total sales quantity
for a given date and the equivalent date in the previous year, as follows:

Sales Quantity YoY% =
VAR _ PREV YEAR =
CALCULATE (

SUM ('Sales'[Sales Quantity]),
DATEADD ('Date Table'[Date], -1, YEAR)
)
RETURN
DIVIDE (SUM ('Sales'([Sales Quantity]) - PREV YEAR, PREV YEAR)

Figure 11-10 shows this measure being used to compare sales quantities
year-over-year:

Year Sales Quantity Sales Quantity PY Sales Quantity YoY%

2007 11,851,928

2008 11,270,399 11,851,928 -4.91%
2009 13,778,083 11,270,399 22.25%
Total 36,900,410 23,122,327 59.59%

Figure 11-10: Comparing sales quantity year-over-year

We can use the same pattern to create measures that give the quarter-over-
quarter percentage change and the month-over-month percentage change.

The following expression will create a measure to calculate the quarter-
over-quarter percentage change:

Sales Quantity QoQ% =
VAR _ PREV_QUARTER =
CALCULATE (
SUM ('Sales'[Sales Quantity]),
DATEADD ('Date Table'[Date], -1, QUARTER)
)
RETURN
DIVIDE (SUM ('Sales'[Sales Quantity]) - ~ PREV_QUARTER, PREV QUARTER)

The following expression will create a measure to calculate the month-over-
month percentage change:

Sales Quantity MoM$% =
VAR _ PREV MONTH =
CALCULATE (
SUM ('Sales'[Sales Quantity]),
DATEADD ('Date Table'[Date], -1, MONTH)
)
RETURN
DIVIDE (SUM ('Sales'[Sales Quantity]) - __PREV _MONTH, PREV MONTH)

The only difference between the three measures in this group is the interval
given as the third parameter of the parzanp function.

This completes the set of patterns for calculating the period-on-period
percentage changes. Next, we will look at a set of patterns for calculating
period-to-date totals.

Calculating period-to-date totals

The patterns in this section make use of the time intelligence functions
rorarmrp, Totarorn, and roraryrn. We'll also look at a pattern for creating a DAX
measure to calculate a week-to-date total. Let's start with a measure that will
give us a running total of sales quantity for the month to date.

The following expression uses the rorawvro function to create a measure that
calculates a running total of sales quantity for the month to date:

Sales Quantity MTD =

TOTALMTD (
SUM ('Sales'[Sales Quantity]),
'Date Table' [Date]

)

The following expression uses a very similar pattern to create equivalent
measures for the sales quantity totals for the quarter to date and year to date.
This expression uses the rorarorp function to create a measure that calculates a
running total of sales quantity for the quarter to date, as follows:

Sales Quantity QTD =

TOTALQTD (
SUM ('Sales'[Sales Quantity]),
'Date Table' [Date]

)

The following expression uses the roraryro function to create a measure that
calculates a running total of sales quantity for the year to date:

Sales Quantity YTD =

TOTALYTD (
SUM ('Sales'[Sales Quantity]),
'Date Table' [Date]

)

e The only difference between these three measures is the time
intelligence function used.

o However, as with the previous period patterns, there is no time
intelligence function to calculate week to date.

o When it comes to calculating the total for the week to date, then the
pattern is more complicated.

The following expression follows a pattern for calculating a running total of
sales quantity for the week to date:

Sales Quantity WTD =
VAR CurrentDate =
LASTDATE ('Date Table'[Date])
VAR DayNumberOfWeek =
WEEKDAY (
CurrentDate,
3
)
RETURN
CALCULATE (
SUM (Sales[Sales Quantity]),
DATESBETWEEN (
'Date Table' [Date],
DATEADD (
CurrentDate,
-1 * DayNumberOfWeek,
DAY
)

CurrentDate

)

e The pattern starts by setting a variable for the current date.

e It then sets a variable for the day number of the week. For this, it uses
the wezxoay function, with a value of 5 being passed as the return type
parameter, to specify that the week starts on a Monday, with a day
number of 0.

 Finally, in the return part of the expression, it calculates the sales
quantity for the days between the start of the current week and the
current date.

This completes the set of patterns for calculating period-to-date totals and
our overall look at patterns for comparing values of equivalent periods. In
the next section, we are going to finish off our look at DAX patterns with
some examples of mathematical patterns.

Working with mathematical
patterns

We are going to round off this chapter with a look at some examples of
mathematical patterns, both simple and complex.

The following examples are based on the measures included in the
Mathematical operations section of the Quick Measures feature found in
Power BI Desktop:

1. First, we have some examples of basic mathematical operation patterns,
starting with an expression that will create a measure using the addition
pattern:

Sales Amount plus Sales Tax =
SUM ('Sales'[Sales Amount]) + SUM ('Sales'[Sales Tax])

2. The following expression will create a measure that uses the subtraction
pattern:

Sales Amount minus Discount Amount =
SUM ('Sales'[Sales Amount]) - SUM ('Sales'[Discount Amount])

3. The following expression will create a measure that uses the
multiplication pattern:

Unit Price x Sales Quantity =
SUM ('Sales'[Unit Price]) * SUM ('Sales'[Sales Quantity])

4. Finally, we have an expression that will create a measure that uses the
division pattern:

Sales Amount divided by Sales Quantity =
DIVIDE (SUM ('Sales'[Sales Amount]), SUM ('Sales'[Sales Quantity]))

5. Next, we have a couple of patterns that will calculate the percentage
difference between two values. We'll start with an expression that will

create a measure to calculate the percentage difference between the total
sales amount and the total return amount, as follows:

Return Amount % difference from Sales Amount =

VAR _ BASELINE VALUE = SUM ('Sales'[Sales Amount])
VAR _ VALUE_TO COMPARE = SUM ('Sales'[Return Amount])
RETURN
DIVIDE (_ VALUE TO COMPARE - _ BASELINE VALUE, _ BASELINE VALUE)

6. With this measure, blanks are treated as zeros in the calculation.
However, in the following example, the pattern is amended so that
blanks will produce blanks in the output:

Return Amount % difference from Sales Amount 2 =
VAR BASELINE VALUE = SUM ('Sales'[Sales Amount])
VAR VALUE TO COMPARE = SUM ('Sales' [Return Amount])
RETURN
IF (
NOT ISBLANK (__VALUE TO_ COMPARE),
DIVIDE (_ VALUE TO COMPARE - BASELINE VALUE, _ BASELINE VALUE)

7. For the final mathematical pattern, we are going to look at a more
complex operation. The following expression will create a measure that
will calculate the Pearson Correlation Coefficient (PCC) over a
given category:

Sales Quantity and Return Quantity correlation for Color =
VAR CORRELATION TABLE =

VALUES ('Product'[Color])
VAR COUNT =
COUNTX (
KEEPFILTERS (_ CORRELATION TABLE),
CALCULATE (SUM ('Sales'([Sales Quantity]) * SUM ('Sales'[Return
Quantity]))

)
VAR _ SUM X =
SUMX (
KEEPFILTERS (__ CORRELATION TABLE),
CALCULATE (SUM ('Sales'[Sales Quantity]))
)
VAR _ SUM Y =
SUMX (
KEEPFILTERS (__CORRELATION_TABLE),
CALCULATE (SUM ('Sales' [Return Quantity]))
)
VAR _ SUM XY =
SUMX (
KEEPFILTERS (CORRELATION TABLE),
CALCULATE (
SUM ('Sales'[Sales Quantity]) * SUM ('Sales'[Return Quantity]

)
)
VAR _ SUM X2 =
SUMX (
KEEPFILTERS (_ CORRELATION TABLE),
CALCULATE (SUM ('Sales'[Sales Quantity]) ~ 2)
)
VAR _ SUM Y2 =

SUMX (
KEEPFILTERS (_CORRELATION_TABLE),
CALCULATE (SUM ('Sales'[Return Quantity]) ~ 2)
)
RETURN
DIVIDE (
__COUNT * SUM XY - SUM X * _SUM Y * 1.,
SORT ((_COUNT * SUM X2 - SUM X ~ 2) * (_ COUNT * _ SUM Y2 -
_SUM Y ~ 2))

)

In this example, the measure calculates the correlation coefficient between
Sales Quantity and Return Quantity over the given color of a product.

ﬂ If you want to find out more about the PCC, check out the following article:

https://blog.gbrueckl.at/2015/06/calculating-pearson-correlation-coefficient-dax/.

Although that concludes our brief look at DAX patterns, you'll find plenty
more examples on the internet that will help you to broaden your knowledge
on this subject. By following established patterns, you will create more
reliable and accurate measures and calculated columns using DAX code.

https://blog.gbrueckl.at/2015/06/calculating-pearson-correlation-coefficient-dax/

Summary

In this chapter, we learned about creating measures and columns, following
the software engineering principle of coding patterns, and how they can turn
your DAX code into templates for more reliable and reusable solutions.

We started with an introduction to the Quick Measures feature in Power BI
Desktop. We looked at how this feature can be used as a quick and easy way
to create DAX measures, without needing to know any DAX code. We saw
how it uses predefined DAX patterns that are modified using the responses
provided through the Quick Measures dialog.

Having explored the Quick Measures feature, we looked at examples of
DAX patterns being used in a number of different areas, including some of
those created by using Quick Measures.

In the next chapter, we'll start our look at performance and optimization,
starting with a look at how we can optimize our data models.

Section 3: Taking DAX to the Next
Level

This section comprises some more advanced DAX topics, including a more
in-depth look at data model optimization. You'll also take the hood oft DAX
by looking at the storage engine and how you can use this knowledge to
optimize your DAX queries:

o Chapter 12, Optimizing Your Data Model
o Chapter 13, Optimizing Your DAX Queries

Optimizing Your Data Model

In chapter 3, Building Data Models, we looked at the importance of building
a well-structured data model. In this chapter, we'll take the practice of data
modeling one step further by learning about some of the techniques behind
data model optimization. As a tabular data model resides in random-access
memory (RAM), reducing its memory requirement is a major consideration
in the overall design process.

We will start this chapter with an introduction to the VertiPaq compression
engine. We'll look at what it is and how it works, and how this knowledge
can help when it comes to optimizing the data in our data models. We'll
investigate data profiling and how this can help identify what sort of data we
should include in our data models, and we'll look at some of the tools
available that can help with this process.

Then, we'll learn about some of the ways we can simplify the structure of our
data models with a focus on column cardinality, column storage, and some
ideas on identifying the correct columns to store. Finally, we'll round off this
chapter with a look at the benefits of using summary tables.

The chapter is broken into the following sections:

e Introducing the VertiPaq engine
e Understanding your data model
o Simplifying your data model

e Creating summary tables

Introducing the VertiPaq engine

The VertiPaq engine is an in-memory columnar database that sits behind
Excel Power Pivot, SQL Server Analysis Services (SSAS) Tabular, and
Power BI. When you load data into a data model, it is loaded, compressed,
and stored in RAM using the VertiPaq engine. You may also see it referred to
by its newer official name, the xVelocity engine, but it 1s still widely known
by the code name used during its development, and this is how we will refer
to it in this book.

Understanding how this database engine processes data when it is loaded
into a data model, even at a basic level, is essential if you want to build
efficient data models.

If you are using DirectQuery to connect to your data, then the VertiPaq engine is

9 The VertiPaq engine is only relevant when you are importing data into a data model.
not used.

With a traditional database, data is stored in tables, each consisting of a set
of rows. Each row is then split into a number of columns that represent
individual data items. Figure 12-1 shows a cut-down version of the Product
table from our data model, structured as we might imagine it with a
traditional database:

ProductKey Product Name Color Class Unit Cost
1|Contoso 512MB MP3 Player ES1 Silver |[Silver Economy £6.62
2|Contoso 512MB MP3 Player E51 Blue [Blue Economy £6.62
3|Contoso 1G MP3 Player E100 White White Economy £7.40
4|Contoso 2G MP3 Player E200 Silver Silver Economy £11.00
5|Contoso 2G MP3 Player E200 Red Red Economy £11.00
6|Contoso 2G MP3 Player E200 Black Black Economy £11.00
7|Contoso 2G MP3 Player E200 Blue Blue Economy £11.00
8|Contoso 4G MP3 Player E400 Silver Silver Economy £30.58
9|Contoso 4G MP3 Player E400 Black Black Economy £30.58

10|Contoso 4G MP3 Player E400 Green Green Economy £30.58

Figure 12-1: A traditional database table

If you wanted to run a query against this table to find all the silver-colored
products, then a traditional database would need to scan all the columns of

all the rows to find the answer. This isn't a problem when the table has a
small number of rows and a small number of columns, as with our preceding
example. However, it can become an issue when dealing with a table that has
millions of rows and a large number of columns. In this case, our query
would result in the database reading and discarding many millions of data
items that are not required.

With the VertiPaq engine, data is stored differently. It is a columnar database,
and, as such, when data is loaded, each column is stored within its own table
structure. Taking the Product table from the previous example, a columnar
database would store the data as shown in Figure 12-2:

Productkey it Cc
1| |Contoso 512MB MP3 Player E51 Silver Silver Economy £6.62
2| |Contoso 512MB ME3 Player E51 Blue Blue Economy £6.62
3 Contoso 1G MP3 Player E100 White White Economy £7.40
4| |Contoso 2G MP3 Player E200 Silver Silver Economy £11.00
5| |Contoso 2G MP3 Player E200 Red Red Economy £11.00
6| |Contoso 2G MP3 Player E200 Black Black Economy £11.00
7| |Contoso 2G MP3 Player E200 Blue Blue Economy £11.00
8| [Contoso 4G MP3 Player EA00 Silver Silver Economy £30.58
9 Contoso 4G MP3 Player EA00 Black Black Economy £30.58
10 Contoso 4G MP3 Player E400 Green Green Econmomy £30.58

Figure 12-2: An example of a columnar database structure

As we can see, each column of the original table is stored as a physically
separate table. Now, if we wanted to find all the silver-colored products, the
database would only need to scan down the table for the Color column.

If we wanted to take our query one step further to find the unit costs of all
silver-colored products, then the database only needs to scan for those
products using the Color column, retrieve the row ID, and then look up the
unit costs for the corresponding row IDs in the Unit Cost column. Where we
have a large table, the potential time saved using this much more efficient
process can be considerable.

In addition to storing the data in our data model in a different way, the
VertiPaq engine also tries to reduce the memory requirement by compressing
data as it is loaded into a data model. It attempts to compress data using the
following algorithms:

e Value encoding
e Dictionary encoding
e Run-length encoding (RLE)

Data compression is important, not only because it reduces the amount of
RAM required to store a data model, but also because it has the potential to
improve overall performance.

Value encoding

When a column contains a number, it will apply the value encoding algorithm
to attempt to reduce the number of bits required to store each number. To do
this, it will look for a mathematical relationship between the values in the
column, which it then uses to transform the values, using fewer bits. When
accessing the values in the column, the engine has to apply the opposite
transformation, which requires additional processing. However, this is an
acceptable trade-off when considering the reduction in memory usage and the
reduced number of reads this method of encoding offers.

To illustrate how this form of compression works, let's look at a simple
example, which uses subtraction to transform the original values of a column.
Suppose, for example, that our Product table also includes a value for the
minimum stock level. If the maximum value in this column is 50, then it
requires 6 bits to store each value. However, if the minimum value in this
column is 40, then the VertiPaq engine could reduce this requirement to just 4
bits by subtracting 40 from each value in the column.

Figure 12-3 gives an illustration of the value encoding process:

Productkey Value encoding
1 50 -40 10
2 50 -40 10
3 40 -40
4 45 -40 5
5 45 -40 5
6 50 -40 10
7 40 -40
8 45 -40 5
9 50 -40 10

10 40 -40 1]
Max value of 50 Subtract minimum Max value of 10
requires 6 bits value requires 4 bits

Figure 12-3: The value encoding process

When retrieving the values from the column, the original value is obtained by
adding 40 back to the value retrieved. As we already mentioned, this process
does require some additional CPU usage. It will also only work on columns
that contain integers. It does not work with floating-point or text values. To
encode columns that contain text and floating-point values, the VertiPaq
engine will use dictionary encoding.

Dictionary encoding

As with value encoding, the purpose of dictionary encoding is to reduce the
number of bits required to store the values in a column. Dictionary encoding
starts by building a dictionary table that contains a set of distinct values in a
column. It then replaces the original values of a column with an integer
number that references the index of the original value in the dictionary table.

The dictionary-encoding process is illustrated in Figure 12-4:

ProductKey id Class ProductKey
1| |Silver 0|(Silver 1 0

2| |Blue 1|Blue 2 1

3| |white Dictionary encoding = 2| white 3 2

4| |Silver 3|Red 4 0

5 Red 4|Black 5 3

6| |Black 5|Green B 4

7| |Blue Dictionary table 7 1

a| |Silver 3 0

9 Black 9 4

10 Green 10 3

Original values Encoded values

Figure 12-4: The dictionary-encoding process
There are two key advantages of using dictionary encoding, as follows:

e All columns contain only integer values.

e The number of bits required to store values in a column equals the
minimum number of bits required to store the ID values in the dictionary
table.

The number of bits required to store the ID value in the dictionary table—
and, hence, the number of bits required to store the values of a column—
depends on the number of distinct values in a column. As such, the number of
distinct values in a column (also known as its cardinality) is a very important
factor when designing a data model. We will look at this subject in more
detail in the next section when we look at understanding your data model.

RLE

Instead of being an additional method of encoding, RLE is used as a method
of compression complementary to dictionary encoding and value encoding.
Once a column has been compressed using one of these two methods, it
attempts to compress the size of the column further by reducing the number of
duplicated values it contains.

Let's demonstrate this with an example. From our Product table, we have a
column that contains the class of a product. First, VertiPaq will attempt to
compress the memory requirement of this column using dictionary encoding.
We are then left with a column that contains values that are repeated over
many contiguous rows. At this point, VertiPaq compresses the column further
by applying RLE.

Figure 12-5 illustrates how the RLE process works. The VertiPaq engine
replaces the existing column with a new structure. The new structure contains
each repeated value just once, along with the number of contiguous rows that
contain that value:

id____Class
1| |Economy 15 rows 0|Economy
2 Economy Dictionaw encoding 9 1|Regular
3| |Economy \l/ 2|Delux
Dictionary table
16| |Regular 21 rows
17| |Regular
] 15
37| |Deluxe 4rows 1 21
38| [Deluxe Run length encoding = 2 a
39 Deluxe \L 1 5
Encoded class table
41| |Regular 5 rows
42| |Regular
43| |Regular \l’

Original values

Figure 12-5: The RLE process

In the example shown in Figure 12-35, the first 15 products are in the
Economy class. These are then followed by 21 products in the Regular
class, four products in the Deluxe class, and another five products in the
Regular class. These rows are encoded in a new column structure, which
contains the dictionary ID and the number of contiguous rows that contain
values relating to that dictionary ID.

VertiPaq will also apply RLE to value-encoded columns. However, unlike in
the preceding example, a dictionary table is not required as the column has
already been encoded with value-encoded integers.

The efficiency of this process is dependent on how the values repeat
throughout the column. If values repeat for many contiguous rows, then
compression will be high. However, if values change frequently, then
compression will be lower. If values change too frequently, the compressed
column may end up requiring more space than the original. If this happens,
VertiPaq will skip the RLE process and will store the original column
instead.

Obviously, the sort order and cardinality of a column may have a significant
impact on the efficiency of RLE compression, and we will look at these in
more detail in the next section.

Understanding your data model

There are a few tools available that will help you to understand your data
model in more detail. Some of these are third-party tools, but if you are
working with a version of Power BI Desktop released after October 2018,
then the Power Query Editor comes with excellent data profiling capabilities
built in. In this section, we're going to look at these and how they can be used
to help you better understand the data that you are working within your data
model.

Data profiling with Power BI
Desktop

To access the data profiling capabilities in Power BI Desktop, we need to
open the Power Query Editor. The easiest way to do this is by clicking on the
Edit Queries button in the External data section of the Home ribbon, as shown
in Figure 12-6:

s [B B ¢

Get Recent Enter Edit Refresh
Data = Sowurces~ Data Queries =

External data

Figure 12-6: Editing queries

This opens the Power Query Editor, where we can work on the data loading
process for our data model. Figure 12-7 shows the Power Query Editor
screen:

@ | & = | Hands-On Bl with DAX (Chapter 12) - Power Query Editor

Transform

Add Calumn

View Help

+ || Query Settings

[*] 125 ProductSubcategorykey |~ |a% 1 4 PROPERTIES

D [FormulaBar [] Monospaced [] Column distribution ﬁ [Always allow D i)
L [] Show whitespace [| Column profile 5 3
Query Goto Advanced Query
Settings| [column quality Column Editor Dependencies
Layout Data Preview Columns Parameters Advanced Dependencies
Queries [5] < fx = Table.SelectRows(#"Merged Queries”, each true)
4 Access Tables [3] i |?3 ProductKey E| ABC Product Name E| Aac Product Description
[Product 1 1 Contoso 512MB MP3 Player ES1 Silver 512MB USB driver plays MP3 and WMA
B Product Subeategory | 2 2| Contoso 512MB MP3 Player E51 Blue 512MB USB driver plays MP3 and WMA
B Sales 3 3 Contoso 1G MP3 Player E100 White 1GB flash memary and USB driver plays MP3 and WMA
a Other Queries 2] 4 4| Contoso 2G MP3 Player E200 Silver 2GB flash memery, LCD display, plays MP3 and WMA
5 5| Contoso 26 MP3 Player E200 Red 268 flash memery, LCD display, plays MP3 and WMA
EE DAX Measures
6 6/ Contoso 2G MP3 Player E200 Black 2B flash memery, LCD display, plays MP3 and WMA
B3 DAX Pattern Measur.. 7 7| Contoso 2G MP3 Player E200 Blue 2GB flash memary, LCD display, plays MP3 and WMA
8 8 Contoso 4G MP3 Player E400 Silver 4GB flash memory and FM Radio, LCD Display with 7-Color Backlight, p...
9 9| Contoso 4G MP3 Player E400 Black 4GB flash memory and FM Radio, LCD Display with 7-Color Backlight, p...
10 10/ Contoso 4G MP3 Player E400 Green 4GB flash memory and FM Radio, LCD Display with 7-Color Backlight, p__
n 11 Contoso 4G MP3 Player E400 Orange 4GB flash memery and FM Radio, LCD Display with 7-Color Backlight, p...
12 12 Contoso 4GB Flash MP3 Player E401 Blue 18" color LCD, play MP3, WMA and Video MTV, and share PG
13 13| Contoso 4GB Flash MP3 Player E401 Black 18" color LCD, play MP3, WMA and Video MTV, and share JPG
14 14| Contoso 4GB Flash MP3 Player £401 Silver 1.8" color LCD, play MP3, WMA and Video MTV, and share IPG
15 15| Contoso 4GB Flash MP3 Player E401 White 18" color LCD, play MP3, WMA and Video MTV, and share JPG
16 16 Contoso BGB Super-Slim MP3/Video Player MB0O White | 2" color LCD, Touchpad, Plays music, video, photos and text
17 17| Contoso 8GB Super-Slim MP3/Video Player MS0ORed | 2" color LCD, Touchpad, Plays music, video, photos and text
18 18 Contoso BGB Super-Slim MP3/Video Player MB00 Green | 2" color LCD, Touchpad, Plays music, video, photos and text
19 19 Contoso BGB Super-Sliim MP3/Video Player M80O Pink | 2" color LD, Touchpad, Plays music, video, photos and text
20 20 Contoso 8GB MP3 Player new model M820 Black 2" LCD with blue-white LED, 320x240-pixel, plays music, video, photos...
21 21 Contoso 8GB MP3 Player new model M820 Blue 2" LCD with blue-white LED, 320x240-pixel, plays music, video, photos...
2 22| Contoso 8GB MP3 Player new model M820 Yellow 2" LCD with blue-white LED, 320x240-pixel, plays music, video, photos._
23 23 Contoso 8GB MP3 Player new model M820 White 2" LCD with blue-white LED, 320x240-pixel, plays music, video, photos...
24 24 Contoso 16GB MpS5 Player M1600 Blue 3" 16:9 TFT Touch screen, 1668 flash memary, plays AVI/RM/RMVB/FLV
5 25/ Contoso 16GB Mps5 Player M1600 Black 3" 16:3 TFT Touch screen, 1668 flash memaory, plays AVI/RM/RWVB/FLV
2% 26 Contoso 16GB Mg5 Player M1600 Green 3" 16:3 TFT Touch screen, 1668 flash memaory, plays AVI/RM/RMVB/FLV
27 27| Contoso 16GB MpS Player M1600 White 3" 16:9 TFT Touch sereen, 1668 flash memary, plays AVI/RM/RNVB/FLV
28 28/ Contoso 16GE MpS Player M1600 Red 3" 16:9 TFT Touch screen, 16G8 flash memaory, plays AVI/RM/RMVB/FLV
29 29 Contoso 32GB Video MP3 Player M3200 White 4.3" Touch screen, 32GB flash memory, beyond 30 hours battery life
30 30 Contoso 32GB Video MP3 Player M3200 Red 4.3" Touch screen, 32GB flash memory, beyond 30 hours battery life
N 31 Contoso 3268 Video MP3 Player M3200 Orange 43" Touch screen, 32GB flash memery, beyond 30 hours battery life
32 32 Contoso 32GB Video MP3 Player M3200 Pink 4.3" Touch screen, 32GB flash memary, beyond 30 hours battery life
3| ¢

Figure 12-7: The Power Query editor screen in Power BI Desktop

Name
A Product

Al Properties

4 APPLIED STEPS
Source
Navigation
Removed Columns
Renamed Columns
Merged Queries
X Filtered Rows.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

>

On the left-hand side of the screen, we can see the current list of tables to

which we are connected. In the middle 1s a view of the columns available in
the currently selected table. Finally, on the right-hand side, we can see a list
of steps that have been applied to the currently selected table, which will be

applied when data from the table is loaded into our data model.

Just underneath the heading of each column is a green-colored bar. This
indicates the quality of the data in each individual column. If you hover over
the bar, you will see a popup that gives a breakdown of the data quality. It
shows how many rows have valid data, how many have errors, and how many
have missing values, as can be seen in Figure 12-8:

2

T | A% Product Name

1 Co A

2/l Product Name

3 col 1000 (100%) 0 (0%) 0 (0%)
2lco valid error empty

5 Co .
& Co

7| Contoso 2G MP3 Player E200 Blue

Figure 12-8: The data quality popup dialog

If there are any errors, then the bar will have a proportion colored red,
depending on the percentage of overall rows that contain errors. Power Query
will not profile columns with errors, beyond flagging the number and
percentage of rows that contain erroneous values, as shown in Figure 12-9:

- E Date -

— - ———————

Q Remove Errors

106
107
Figure 12-9: The data errors indicator bar

01/01/2019
01/01/2019

If you click on the Remove Errors option, then Power Query will apply an
additional Removed Errors step to the APPLIED STEPS section of the editor.
This will remove from the data loading process any rows that are causing
errors.

If there are any rows with missing values, these will be shown as a black
section of the green bar. Again, the size will depend on the percentage of rows
with data missing, and there will be an option to remove these rows from the
data load, as shown in Figure 12-10:

- ;Eg Value - E| Date

Value

9 (90%) O (0%) 1(10%)

walid error empty

Q Remowve Empty

Figure 12-10: The missing data indicator bar

If you click on the Remove Empty option, then Power Query will apply an
additional Filtered Rows step to the APPLIED STEPS section of the editor.
This will filter out from the data loading process any rows that contain
missing values.

In addition to the popup showing data quality details, you can add these as an
expanded section to the header of each column, as shown in Figure 12-11:

== |23 1] E‘ AB,C Description E 123 Value Iz‘ Hig| Date
T FIFTTTFETTFTFFFITFTFTFIFS
& Valid 100% | & Valid 100% | = Valid 90% | = Valid - %
® Error 0% | ® Error 0% | ® Error 0% | @ Error 10%
o Empty 0% | @ Empty 0% | = Empty 10% | = Empty - %
1 1 Example 1 100 01/01/2019
2 2 Example 2 101 | Error
3 3 Example 3 102 01/01/2019
4 4 Example 4 null 01/01,/2019
5 5| Example 5 104 01/01/2019
[& Example 6 105 01/01/2019
T 7| Example 7 106 01/01/2019
8 8 Example 8 107 01/01/2019
g 9 Example 9 108 01/01/2019
10 10| Example 10 109 01/01/2019

Figure 12-11: The data quality column header

To enable this view, tick the Column quality checkbox in the Data Preview
section of the View ribbon, as shown in Figure 12-12:

Add Column View Help
|:| Monospaced |:| Column distribution
|:| Show whitespace |:| Column profile
Column quality

Data Preview

Figure 12-12: Enabling the data quality column header

In addition, in this section of the View ribbon, there are checkboxes labeled
Column distribution and Column profile that enable additional views. Let's
start by looking at the Column distribution view. Tick the Column distribution
checkbox to enable the view; you will see a new section has been added to
the header of each column.

As we can see in Figure 12-13, the header of each column now has a small
bar chart that shows the distribution of values in the column. It also shows the
number of distinct values and the number of unique values contained in the
column:

. 12; ProductKey E A'c Product Name E A'¢ Product Description E| 123 P yKey |Z| ABC T |Z|
® Valid 100% | @ Valid 100% | ® Valid 100% | » Valid 100% | » Valid 100%
® Error 0% | ® Error 0% | ® Error 0% | ® Error 0% | ® Error
® Empty 0% ® Empty 0% | » Empty 0% | » Empty 0% | » Empty

1690 distinet, 1490 unique 1490 distinct, 1690 unique distinct, 225 unique 22 distincl, 0 unique 10 distinct, 0 unique
1 1 Contoso 512MB MP3 Player ES1 Silver 512MB USE driver plays MP3 and WMA 1| Contoso, Ltd
2 2 Contoso 512MB MP3 Player E51 Blue 512MB USE driver plays MP3 and WMA 1| Contoso, Ltd
3 3 Contoso 1G MP3 Player E100 White 1GB flash memory and USB driver plays MP3 and WMA 1| Contoso, Ltd
4 4/ Contoso 2G MP3 Player E200 Silver 2GB flash memery, LCD display, plays MP3 and WMA 1| Contoso, Ltd
5 5 Contoso 2G MP3 Player E200 Red 2GB flash memory, LCD display, plays MP3 and WMA 1| Contoso, Ltd
6 & Contoso 2G MP3 Player E200 Black 2GB flash memory, LCD display, plays MP3 and WMA 1| Contoso, Ltd
1 7 Contoso 2G MP3 Player E200 Blue 2GB flash memary, LCD display, plays MP3 and WMA 1| Contoso, Ltd
8 & Contoso 4G MP3 Player E400 Silver 4GB flash memory and FM Radio, LCD Display with 7-Color Backlight, p... 1| Contoso, Ltd
9 9 Contoso 4G MP3 Player E400 Black 4GB flash memory and FM Radio, LCD Display with 7-Color Backlight, p... 1| Contoso, Ltd
10 10| Contoso 4G MP3 Player E400 Green 4B flash memary and FM Radio, LCD Display with 7-Color Backlight, p... 1| Contoso, Ltd
1 11 Contoso 4G MP3 Player E400 Orange 4GB flash memory and FM Radio, LCD Display with 7-Color Backlight, p... 1| Contoso, Ltd
12 12 Contoso 4GB Flash MP3 Player E401 Blue 1.8" color LCD, play MP3, WMA and Video MTV, and share IPG 1| Contoso, Ltd
13 13| Contoso 4GB Flash MP3 Player E401 Black 1.8" color LCD, play MP3, WMA and Video MTV, and share IPG 1| Contoso, Ltd
14 14 Contoso 4GB Flash MP3 Player E401 Silver 1.8" color LCD, play MP3, WMA and Video MTV, and share IPG 1| Contoso, Ltd
15 15 Contoso 4GB Flash MP3 Player E401 White 1.8" color LCD, play MP3, WMA and Video MTV, and share IPG 1| Contoso, Ltd

Figure 12-13: The column distribution bar chart

As we have seen already when looking at the VertiPaq engine, and as we shall
see again in the next section, these two values are important when you are
looking at what data to include in your data model. Non-integer columns that
contain a large number of distinct values will require more memory than those
with fewer values as the dictionary that VertiPaq creates will be larger. The
lower the number of unique values, then the greater the chance that the column
will contain repeating values over contiguous rows, improving the efficiency
of compression through RLE.

In theory, when selecting data to load into your data model, you want to avoid
columns that contain a high number of distinct values and a high number of

unique values. In practice, this may not always be possible, but it is a good
indicator when exploring your data.

The final view that we're going to look at is the Column profile view. To
enable this view, tick the Column profile checkbox in the Data Preview
section of the View ribbon. This will add a new view to the bottom of the
table display, as shown in Figure 12-14:

Column statistics *== || Value distribution e
Count

Error [

Empty [

Distinct 22

Unique [

Nal 0

Zero [

. i
. T
Average 21.2698... @ -~ m o !

Figure 12-14: The column profile view

As you can see, this view not only gives a more detailed view of how values
are distributed throughout the column but also gives an expanded set of
statistical data. In addition, you can right-click on any of the columns in the
Value distribution chart and filter on values or replace values, adding an
additional step to the APPLIED STEPS section.

Data profiling in SSAS Tabular and
Excel Power Pivot

If you are not using Power BI Desktop, then there are other tools you can use
to profile data in your data model.

If you are working with SSAS Tabular, then you can use SQL Server
Management Studio (SSMS) to connect to the Analysis Services database
and query your data model. You can also use a couple of excellent third-party
tools called DAX Studio and VertiPaq Analyzer.

If you want to try out DAX Studio, then you can find more details at:

ﬂ https://daxstudio.org
If you want to try out VertiPaq Analyzer, then you can find more details at:

https://www.sqglbi.com/tools/vertipag-analyzer/

Using either SSMS or DAX Studio gives you access to Dynamic
Management Views (DMV). The DMVs give you a way to see how data in
your data model is compressed. They give you details of how space is being
used by tables and columns.

The following DMVs are particularly useful for exploring the data in your
data model:

® DISCOVER OBJECT MEMORY USAGE
® DISCOVER STORAGE TABLES
® DISCOVER STORAGE TABLE COLUMNS

® DISCOVER STORAGE TABLE COLUMN SEGMENTS

Figure 12-15 shows an example of p1scover sTorace_taLes DMV being queried
using DAX Studio:

https://daxstudio.org/
https://www.sqlbi.com/tools/vertipaq-analyzer/

B~ DaxStudio - 294 O
h Home Help A
’ 0 5 E ¥ Cut K Undo % A To Upper F Comment P Find @ ﬂ,? % [B] Batch ’ c
Run Cancel Clear Output =11 Copy Al Redo Fo-;-t & ToLower 78 Uncomment - §” Replce Load Perf All Qiry Server 8 cace m Connect Refresh
. Cache . Paste Query Wi Swap Delimiters 2 Merge XML Data Queries Plan Timings Internal || Bottom Layout Metadata
Query Edit Format Find Pawer Bl Traces Server Timings Connection
DMV 1 1 select DIMENSION_NAME, a
] DBSCHEMA TABLES (i Rowis. CoT
ﬁ DISCOVER_CALC_DEPENDENCY g from $SYSTEM.DISCOVER_STORAGE_TABLES
ﬁ DISCOVER_COMMAND_OBJECTS
ﬁ DISCOVER_COMMANDS
ﬁ DISCOVER_CONNECTIONS
ﬁ DISCOVER_CSDL_METADATA
ﬁ DISCOVER_DATASOURCES
ﬁ DISCOVER_DB_CONNECTIONS v
2] DISCOVER DB_MEM STATS 100%E < ’
73] DISCOVER_DIMENSION_STAT Rels -1
ﬁ DISCOVER_ENUMERATORS
ﬁ DISCOVER INSTANCES DIMENSION_NAME TABLE ID ROWS _COUNT
ﬁ DISCOVER JOBS Product H$Product (314)$ProductKey (326) 1693 -
= DISCDVER_KEYWORDS Product H$Product (314)§Product Name (327) 1693
= DISCDVER_LWERALS Product H$Product (314)§ProductSubcategoryKey (329) 25
= DISCOVER_LOCATIONS Product H$Product (314)$Product Description (328) 519
= DISCOVER_LOCKS Product H$Product (314)$Manufacturer (330) 13
= DISCOVER_M EXPRESSIONS Product H$Product (314)$Brand (331) 13
= DISCOVER_M;\STER . Product H$Product (314)$Class (332)]
- - Product H$Product (314)§Style (333) 1693
% E:zig:i':xix;;m Product H$Product (314)$Color (334) 19
- Product H$Product (314)§Stock Type (335)]
3 DISCOVER MEMORYUSAGE Product H$Product (314)$Unit Cost (336) 400
£ DISCOVER OBECT ACTVTY Product H$Product (314}$Unit Price (337) 353
FE DISCOVER ORIECT MEMORY USAGE Product HSProduct (314)$Available For Sale Date (338) 316
7] DISCOVER PARTITION_DIMENSION STAT product HSProduct (314)8top Sae Date (346) 3
EE} DISCOVERPARTIION STAT Product HSProduct (314)$Status (354) 4
EED DISCOVER PERFORMANCE COUNTERS Product HSProduct (314)$Column (46061) 1693
EEH DISCOVER,POWERBI DATASOURCES Product HSProduct (314)§Column (46151) 563
{E] DISCOVER_POWERBLROLES q Product HS$Product (314)$Column (47079) 6 B

Metadata | Functions | DMV

Qutput | Results | Query History

Ready

Ln 3, Col 18 !Iucalhr;nst:ﬁﬂ?'\ 0 15

Figure 12-15: DAX Studio being used to query a DMV

330 288 58rows 00:000

DAX Studio is also able to connect to an Excel Power Pivot data model and
gives you a good way to access and explore data if your data model is in

Excel.

Simplifying your data model

In chapter 3, Building Data Models, we looked at the process of building a
data model in some detail. In this section, we will revisit some of the topics
we covered, along with what we have just learned about the workings of the
VertiPaq engine. Using this combined knowledge, we will focus on some of
the ways in which we can optimize the overall memory requirements of our
data models and improve performance.

As we saw in the previous section, VertiPaq's ability to compress data is
dependent on several factors. As such, there are some elements that you need
to consider when building a data model that will have a direct impact on the
efficiency of the compression algorithms. These include the following;

e The cardinality of values in a column. This affects VertiPaq's ability to
reduce the number of bits used to store a value. If a column has low
cardinality, then the dictionary size will be much smaller. Also,
consider the granularity of data. If you use a higher granularity than you
need—for example, if you are storing date and time when you only need
the date—then you will have a much larger column dictionary than you
need.

e The number of values repeated in contiguous rows in a column. A
column that contains values repeated over many contiguous rows will
achieve greater compression than a column that contains frequently
changing values.

e The sort order of rows in a table. Although VertiPaq's algorithms will
search for the best sort order as part of the compression process, they
will consider the physical order of the rows received.

e The number of rows in a table. Do you need all of the data, or can it be
filtered before loading?

e The data type of a column. However, this will only influence the
dictionary size, so is not relevant for value encoding.

In addition, there are some more general rules that you should follow when
building a data model, which will help to reduce the model's overall memory

requirement, as follows:

e Understand your source data.

o Keep your data model as simple as possible.

e Use a star schema over a snowflake schema.

e Merge and append tables to simplify the data model.

e Only import rows and columns that are needed in the model.

e Ensure columns are defined with the correct data type.

e Create measures instead of calculated columns, where possible.

Let's look at these rules 1n a bit more detail.

Understanding your source data

The first step in understanding a data model is to collect some information
about the data we have in the data sources from which we will be importing.
Specifically, we need to look at the following;

e The number of rows in the tables

The number of distinct and unique values in each column
Details of any hierarchies

The number and complexity of relationships

The data needed for our analysis

Of these points, the most important is the number of distinct values in each
column, also referred to as column cardinality (as opposed to relationship
cardinality, which we looked at in chapter 3, Building Data Models). As we
have seen, column cardinality has an impact on the size of the dictionary
created by VertiPaq when it carries out dictionary encoding on a column. The
higher the cardinality of a column, the more rows will be stored in a
dictionary, and the bigger the size. If you only have a few unique values, then
the size of the dictionary will be much smaller, and VertiPaq will be able to
achieve a much higher compression ratio.

Keeping your data model simple

Although it is possible to create a very complex data model that contains
hundreds of tables with many relationships, there are several reasons why
you should avoid this. Firstly, you will end up with a very large field list,
making the data model difficult to work with and prone to errors. Even with
good compression, a large data model will use excessive amounts of memory
and will suffer from poor performance. A large and complicated data model
will also make it extremely difficult to write and troubleshoot DAX queries.

Unlike the design of a traditional relational database, where the data
structure is highly normalized, we should look to denormalize data when
designing a tabular data model. Each table and associated relationship have
cost overheads in terms of memory and the passing of filters between tables.
Although the best performance might be obtained from a model that uses a
single flattened table, this would, in practice, be difficult to use. A more
realistic approach would be to design a data model that uses a star schema.

Using a star schema

In chapter 3, Building Data Models, we looked at some of the virtues of using
a star schema. With a star schema, the data model consists of a denormalized,
or flattened, fact table that sits at the center. This contains the numerical data
that we use with measures, on which to base our analysis. Each entity in this
table is then connected to lookup or dimension tables that are arranged around
the fact table to create the classic star shape. Figure 12-16 shows an example
of this style of data model, and illustrates why it is known as a star schema:

- Stores
[AddrassLingd
[Adddreselina
11 CloseDate
[CloseAzzson
| DimChannel - I EmplyeeCatnt - DimPromotion

[Entiyicey _
o il d (7 DiscountPercent
1 ETLLOAG

1 Channeliey & EnlDste
7] ChannelLzbel (=) ETlLoadiD

T ChannelName [LoadDate

{1 EMloadid (1 MaxQuantity
1 LeadDate 1 MinQuantity
T UpdateDate

71 Channel Desirigtion

(] PromationCategory

[channgliizy
[Cumenoyey

[DiscountQuantiy
[£Tilosdl0
[LeadDate

Doindde - Dinfroduct

1 CalendarDayORtiesk ErandNzme

1) CalendarDayOfieskd.. ClagslD

0 CalandarHalftear (3 Classhlame
M CalendarHalfYeariace [Colerld

1 CalendarMorsh (1 CeleeName
M Calendarhonehlsbel 1 £TLLoadld
M CalendarQuaner

M Asistezeon AvsilablchrSelel}aa

Figure 12-16: A start schema based data model

You may also have a data model where there are dimension tables that are
related to other dimension tables, in the form of a hierarchy chain. For
example, there might be a product table that is related to a product category

table and a brand table. This style of schema is known as a snowflake schema
as it resembles a simple snowflake in shape.

Merging and appending tables

You should look to simplify your data model by merging or appending tables
where possible. For example, you may have a data source that contains a
different table of data for each year. In such a case, you would append the
data into a single table as part of the data loading process.

You may find that your data model resembles a snowflake schema. For
example, if you pull tables in from a relational database, you might have a
product table that has relationships with tables such as product category,
color, brand, and class. In a relational database, this structure avoids
duplication of data in columns. However, as we have seen already, the
VertiPaq engine will automatically create a dictionary for each column,
which avoids the memory cost of having duplicated values in a column. We
should denormalize the tables that make up the outer edges of the snowflake
by merging them together to form a single dimension table.

You may occasionally have tables in your data model that have a one-to-one
relationship. With these, you should flatten the data model by merging the
tables into one.

Importing required rows and
columns only

You will find that many tables in a database contain data gathered over long
periods of time, or contain information for areas not required for a particular
report. Always filter out historical or unrelated data as part of the data
loading process. If you filter out data in your report after it has been loaded,
it is still using valuable memory and making your data model larger than it
needs to be.

If you have access to the source database, then consider using views to
exclude unnecessary rows of data. This will also speed up the data loading
process.

When you are building your data model, look at each column and ask whether
it is necessary to include it. If it doesn't contribute to the required analysis,
do not include it, especially if the values have a high cardinality. Missing
columns can easily be added later if you find they are subsequently required.

If you are importing data from a data warehouse, then you will often find
multiple date fields that are created by the Extract, Transform, and Load
(ETL) process to record when the row was created, last updated, or when
the ETL process last ran. These are rarely needed in a data model and should
be excluded from the data model during the load process.

While primary keys may be needed for dimension tables, to create the
necessary relationships, they are usually excluded from fact tables. Primary
key columns contain unique values, and will not compress very effectively. If
you have a fact table with millions of rows, this will consume a large amount
of memory unnecessarily.

Similarly, look out for Autonumber columns, columns used as an IDENTITY,
or columns that contain globally unique identifiers (GUIDs). These types of

columns will all contain highly unique values and will suffer from low
compression ratios. Only include these where you know they will be needed
for analysis purposes.

Using the correct data type

Always ensure that you define columns in your data model with the correct
data type. Certain data types use more memory than others. Where possible,
use integers in place of strings, and use dates instead of datetimes. If your
data model contains times, only store to the necessary granularity that is
really needed. Times stored down to milliseconds require much more
memory than times only stored down to minutes. If you don't need to store the
time at all, then ensure you use the date data type instead.

You should also look at the possibility of splitting columns. For example, if
you do need to include time in your analysis, then you could split a
DateTime column into the separate date and time columns. This should be
done at source or during the data loading process, and not by using calculated
columns, as this would only increase the memory overhead.

Finally, consider the granularity of a column. Storing time at the hour level
would result in 24 unique values, while storing down to the millisecond
would give you 86,400,00 unique values. Remember that the greater the
granularity of the values in a column, the higher the cardinality, and the lower
the compression ratio that can be achieved for storing the values in that
column. The other advantage of a lower granularity 1s that you are more
likely to have repeated values over contiguous rows, further improving the
chances of a higher compression ratio.

Do not be tempted to reduce the granularity of dates, such as having a single
date for each month. The time intelligence functions in DAX rely on a
complete set of calendar dates, and reducing the granularity of dates in this
manner would prevent these from working correctly.

Using measures instead of
calculated columns

A calculated column will take up more memory than a standard column.
Wherever possible, you should avoid having too many calculated columns in
your data model. Also, consider ways in which a measure may be used to
replace standard and calculated columns. For example, in our Sales table,
we have Unit Price, Sales Quantity, and Sales Amount columns. However,
the Sales Amount column could be replaced by a measure. This measure
would make use of the Unit Price and Sales Quantity columns to calculate the
sales amount value.

The following DAX expression would create a measure that could be used to
replace the Sales Amount column in the Sales table in our data model:

SalesAmountMeasure =
SUMX (

Sales,

(Sales[Sales Quantity] * Sales[Unit Price]) - Sales[Discount Amount]
)

With the Sales table containing well over 2 million rows, this has the
potential to make a difference to the memory requirement of our data model.
Alternatively, if we only want to do an analysis using the Sales Amount and
are not interested in Sales Quantity or Unit Price, then it would make more
sense to retain the Sales Amount column and remove the Sales Quantity and
Unit Price columns instead.

One instance where you might consider using a calculated column to improve
performance is where you have a measure that uses a logical expression,
based on a column with high cardinality. For example, let's take the
following measure:

HighSalesAmountCountl =
COUNTROWS (
FILTER (

Sales,
Sales([Sales Quantity] * RELATED (Product[Unit Price]) >= 20000

This measure counts the number of rows in the Sales table where the Sales
Quantity multiplied by the Unit Price from the related product in the Product
table is greater than or equal to 20,000. As the Sales table has over 2 million
rows, this filter iteration is a potentially expensive process.

However, we can convert the filter expression into a calculated column using
the following expression:

HighSalesColumn =
Sales[Sales Quantity] * RELATED ('Product' [Unit Price]) >= 20000

Now, we have a calculated column that contains just two unique values of
TrUE OF Farse. We can use this new column to revise our previous measure,
using the carcurare function, to apply a filter with it.

The following is the expression used for the revised measure:

HighSalesAmountCount2 =

CALCULATE (
COUNTROWS (Sales),
Sales[HighSalesColumn] = TRUE

As this revised measure applies a direct filter to the Sales table at execution
time, it should be more efficient than the original version of the measure
when queried.

Creating summary tables

In the last section of this chapter, we're going to take a look at another way
you can optimize your data model, through the use of summary tables.
Although the use of summary tables will not necessarily help to reduce the
size of your data model in terms of memory usage, they are a great way to
improve performance, especially if your data model contains large tables with
millions of rows. Any visual that uses a summary table will potentially be
much faster than if it were working directly with a larger native table.

There are a couple of ways to create summary tables. If you have access to the
source database, then you can create summary tables at the source using SQL
views. This has the advantage that, if not needed for analysis, you do not need
to import the larger table on which the views are based. If you don't need to
import the larger table into your data model, then you may be able to reduce
its overall memory requirement.

However, if you don't have access to the source database, or you still need to
load the large tables into your data model, you can create summary tables by
using calculated tables. You can create aggregation summary tables using the
somvary OT crouesy functions. Alternatively, you can create summary tables that
contain subsets of data using the rrirer function.

Let's ook at summary tables with some hands-on examples. We'll start by
creating an aggregation summary table using the crovrsy function with the Sales
table from our data model.

Before we start, the syntax for the crouesv function is as follows:

GROUPBY (<Table> [, <GroupBy ColumnName> [, [<Name>] [, [<Expression>] [,

<GroupBy ColumnName> [, [<Name>] [, [<Expression>] [, ..] 1 1 111 1)

In the following example, we will create a summary table that aggregates the
Total Sales Quantity and the Total Sales Amount for each product, by date.

For this, we will create a calculated table using the following DAX

expression:

GROUPBY (
Sales,

Sales by Date

Sales[SalesDateKey],
Sales[ProductKey],

"Total Sales Quantity",
"Total Sales Amount",

SUMX

SUMX

(

(CURRENTGROUP

CURRENTGROUP

O

This gives the result shown in Figure 12-17:

Home Modeling Help
=] —
x B E& @
Manage Mew Mew New Mew
Relationships Measure Column Table Parameter
Relationships Calculations What If
il W« |1 5ales by Date =
2 GROUPBY [
3 Sales,
E 4 Sales[SalesDatekey],
5 Sales[ProductKey],
5= 6
7
8)

it

Sort by
Column =

Sort

Data type: Whole Number =

Format: Whole number =

$v oL s _53 Default Summarization: Count ~

Formatting

"Total Sales Quantity™, SUMX (CURRENTGROUP (),
"Total Sales Amount™, SUMX (CURRENTGROUP (), 'Sales'[Sales Amount])

O

'Sales'[Sales Quantity]),
'Sales' [Sales Amount])

Home Table: ~

Data Category: Uncategorized ~

Properties

'Sales'[Sales Quantity]),

Sales_ProductKey Sales SalesDateKey [~ || Total Sales Quantity [~ | Total Sales Amount |~ |

1

[e S e s T T T e T S S S i By S SO =

04/10/2009 00:00:00
06/07/2008 00:00:00
30/10/2008 00:00:00
12/10/2008 00:00:00
30/05/2008 00:00:00
17/06,/2008 00:00:00
19/06,/2008 00:00:00
29/10/2008 00:00:00
31/07/2008 00:00:00
18/10/2008 00:00:00
01/08/2008 00:00:00
25/06,/2008 00:00:00
03/10/2008 00:00:00
20/05/2007 00:00:00
25/10/2007 00:00:00
16/05/2007 00:00:00
19/04/2007 00:00:00
28/10/2007 00:00:00

40
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

£519.6
£129.8
£129.9
£129.8
£129.8
£129.9
£129.8
£129.89
£129.59
£129.8
£129.89
£129.9
£129.8
£129.9
£129.8
£129.8
£129.59
£129.8

Figure 12-17: Creating a summary table

o
[¥)

Manage
Roles

Next, let's create a subset of the Sales table, showing only sales for red
products. We can do this using the rirrer function by using the Sales and
Product tables.

The syntax for the rrrrer function is as follows:
FILTER (<Table>, <FilterExpression>)

In the following example, we will create a summary table that only shows
Sales for related products in the Product table, where the color is Red. For
this, we will create a calculated table using the following DAX expression:

Sales (Red Products) =
FILTER (
Sales,
RELATED ('Product' [Color]) = "Red"

Finally, we can combine these two ideas to create a summary table, based on
a subset of data. In this case, it is the Total Sales Quantity and the Total Sales
Amount for each product, by date, for red products only. For this, we will
create a calculated table using the following DAX expression:

Sales (Red Products) by Date =

GROUPBY (
FILTER (Sales, RELATED ('Product' [Color]) = "Red"),
Sales[SalesDateKey],
Sales[ProductKey],
"Total Sales Quantity", SUMX (CURRENTGROUP (), 'Sales'[Sales Quantity]),
"Total Sales Amount", SUMX (CURRENTGROUP (), 'Sales'[Sales Amount])

Here, we have used some very simple examples to illustrate the concept of
summary tables. However, depending on the requirements, the DAX
expressions used to create summary tables can become quite complex.

Summary

In this chapter, we learned about some of the techniques we can use to help
us optimize our data models. We learned that reducing a data model's
memory requirement is a major consideration in the overall design process.

We started off by learning about the VertiPaq compression engine. We looked
at what it is and how it works, and why this knowledge is essential if we
want to effectively optimize our data models. Next, we learned about data
profiling, and how this can help us identify what data to include in a data
model. This included a look at the data profiling capabilities of Power Bl
Desktop, along with some other tools that are available to help with this
process.

We then learned about some of the ways we can simplify the structure of our
data models looking at column cardinality, column storage, and identifying
the correct columns to store. Finally, we looked at the benefits of using
summary tables, along with some examples.

In the final chapter of this book, we'll complete our learning by looking at
ways in which we can optimize our DAX queries. We'll start by looking at
some of the tools that are available and how these can help us with our query
optimization.

Optimizing Your DAX Queries

For the last chapter in this book, we are going to look at some of the
techniques and tools you can use to analyze DAX query performance and
identify potential problems.

We will start this chapter by learning about the storage engine and the
formula engine. These are the two engines that are used to resolve DAX
queries. We'll look at how these engines work together to retrieve data from
the data model and return a result. We'll also learn how this knowledge can
help to identify and resolve performance issues with DAX queries.

We will then look at some of the tools we can use to investigate the
performance of DAX queries. These include DAX Studio, the SQL Server
Profiler, and the Performance Analyzer feature in Power BI Desktop. We'll
learn how to use these tools and how they can help to find potential
bottlenecks and performance issues with our queries.

This chapter is broken down into the following sections:

e Introduction to the DAX calculation engines
e Monitoring performance with DAX Studio
e Using SQL Server Profiler

e Using Power BI Performance Analyzer

Introduction to the DAX calculation
engines

Before we start looking at using tools to help us to optimize our DAX
queries, we need to understand a little bit about the tabular query engine
architecture.

When you execute a DAX query using the in-memory mode, it uses two
different engines to run the calculations and come back with a result. These
two engines are known as the Formula Engine (FE) and the Storage Engine
(SE), and they work together in different roles to calculate the result of DAX
queries.

If you execute a DAX query using DirectQuery mode, then the query engine simply
coverts the DAX into a SQL statement and sends it to be executed by the external
SQOL Server. The query engine does no further work other than return the query
result that it receives back from SQL Server.

When a DAX query is executed, a combination of the function engine and the
storage engine is used to resolve the query and return an answer. In the
process, the following steps are taken:

1. The query is transformed into an expression tree.

2. A logical query plan, containing the set of logical operations needed to
execute the query, is produced.

3. The logical query plan is transformed into a physical query plan,
containing the set of physical operations needed.

4. The physical query plan is executed, and data is retrieved from the
storage engine, allowing the result of the query to be calculated.

Steps 2 and 3 are particularly important when it comes to optimizing DAX
queries. It is these steps that produce the plans that we can read, allowing us
to understand how the query engine resolves our queries. In later sections of

this chapter, we will look at some of the tools available to help us to obtain
and read these logical and physical query plans.

The formula engine

When your DAX query is executed, it s 1nitially processed by the formula
engine. It processes each of the steps presented by the physical query plan
and can, therefore, resolve complex DAX expressions. When an operation in
the physical query plan requires data from the data model, it passes a request
to the storage engine. This 1s where the two engines begin their interaction in
resolving DAX queries.

The formula engine is single-threaded, meaning that it can only use one core
to carry out each operation, regardless of how many cores or threads are
available to it. As such, it can only perform one request to the storage engine
at a time.

In response to the formula engine's request for data, the storage engine will
return the data stored in a temporary data cache. Unlike the compressed
column stores that are held by the storage engine, data in this cache 1s
uncompressed and held in straightforward in-memory tables.

The formula engine works with either the data structures created by its own
operations or with the caches created by the storage engine. The results from
the formula engine are not cached in memory so they need to be recalculated
each time they are needed. However, the data cache returned by the storage
engine 1s retained and can be reused for queries that follow. This can be
especially good for improving performance when you have a measure that
needs to calculate many data points for a visual on a report.

The storage engine

The storage engine 1s officially called the xVelocity in-memory analytical
engine, but as we saw in the previous chapter, it is better known as the
VertiPaq engine. As we have already seen, the purpose of the storage engine
is to take requests from the formula engine, scan the columnar database,
retrieve the relevant data, and then return the data to the formula engine in the
form of a data cache.

Each scan is the result of an internal query that uses a SQL-like language
called xmSQL. As we shall see later in this chapter, we can use tools to view
the xmSQL queries, which will help us to understand how the formula engine
1s querying the storage engine.

Unlike the formula engine, the storage engine is multi-threaded. This means
that operations carried out by the storage engine can utilize multiple cores 1f
they are available. However, the storage engine only receives requests from
the formula engine in a synchronous manner. Being single-threaded, the
formula engine must wait for a query request to be completed by the storage
engine before it can send the next request. As such, the storage can only make
use of its multi-threaded ability when processing a query that involves
several column segments, where it can use one thread per segment.

The data cache holds a limited number of results from the storage engine, but
if the storage engine receives a request that matches one already in the cache,
it will use the cached version rather than scan data in memory. The storage
engine is generally faster at scanning than the formula engine, as it is
optimized for scan operations. It also has the advantage that it scans
compressed data, whereas the formula engine scans data held in a cache,
which is uncompressed.

Monitoring performance with DAX
Studio

In the previous section, we learned that part of the process of executing a
DAX query results in the calculation engine producing a logical query plan
and a physical query plan. In addition, when attempting to optimize a slow
DAX query it helps to understand which elements are carried out by the
formula engine and which are carried out by the storage engine. To help us
with both processes, we're going to look at using DAX Studio, a third-party
tool that we've looked at briefly in previous chapters.

To follow along with this section, you will need to download and install DAX Studio,

9 which is available from:

https://daxstudio.org

Once you have installed DAX studio, you will be able to create links to
tabular data models in the following products:

e Power BI
e Excel Power Pivot
e SQL Server Analysis Services (SSAS) Tabular

If you are working with an Excel Power Pivot data model, then you will need
to connect to DAX Studio by launching it from within Excel itself:

1. Once you have your Power Pivot file open in Excel, go to the Add-ins
ribbon and click on the DAX Studio button, as shown in Figure 13-1:

File Home Insert Page Layout Formulas Data Review View Add-ins Help Power Pivot

|)2

DAX
Studio

K14 - Je

https://daxstudio.org/

Figure 13-1: The DAX Studio button in Excel Power Pivot

2. DAX Studio should now open showing the connection dialog, as shown
in Figure 13-2. Select the default option of PowerPivot Model for the
data source, which should also show the name of the Excel file
containing your data model:

Connect
Data Source
® PowerPivat Model Hands-On Bl with DAX (Chapter 13).xlsx

) PBI/ S5DT Model
() Tabular Server JOSHSGAMELAPTOF

w | Advanced Opticns

| Connect || Cancel |

Figure 13-2: Connecting DAX Studio to a PowerPivot data model

3. Click on the Connect button to open DAX Studio, which will now be
connected to your Excel Power Pivot data model.

However, for this section, we are going to work with a Power BI Desktop
example. To connect to a Power BI data model, you need to ensure that the
required Power BI Desktop file is open, with the data loaded. Unlike with
Excel, there is no icon from within the Power BI Desktop application to open
DAX Studio, so it should be opened from the Windows desktop:

1. Once again, you will be presented with the connection dialog. This time
select the PBI/ SSDT Model as the data source and select the
appropriate Power BI Desktop file from the associated drop-down list,
as shown in Figure 13-3:

Connect

Data Source
PowerPivot Model (&

(@ PBIl/SSDT Model lall Hands-On Bl with DAX (Chapter 13) v

() Tabular Server

v | Advanced Options

| Connect || Cancel |

Figure 13-3: Connecting DAX Studio to a Power BI data model

2. Click on the Connect button to open DAX Studio, which will now be
connected to your Power BI data model.

Once open and connected to your Power BI data model, you will be
presented with a screen like the one shown in Figure 13-4:

|4 DaxStudia - 210.1

“ Home = Help ~
’ ? D (it ©Unde DAX A ToUpper = Comment Find % ﬁ e ?@ B 's |
. ; F =

R oy N Redo = A To Lower % Uncomment Replace i R/
Run Cancel Clear Output Format Load Perf Al Query Server Connect Refresh
- - Metadata

Cache . Paste Query 1li Swap Delimiters 2 Merge XML Data Queries Plan Timings
Query Edit Format Find Power B Traces
Queryl.dax X

41

Metadata 1 1 a
Hands-On Bl with DAX (Ch v
W Model

™ Available Date e
4 Ayzilable Date (original)
n {org

1 Date

!
!
!
! _m DateTableTemplate_bd3
i 1" Key Measures
i -m LocalDateTable_410eec
I 7 LocalDateTable_9f5836(
I 7 LocalDateTable_9fdc263
i -m Manufacturer Sales
4 [T Product '
E Available For Sale D 100%w ’
E Available From (Ori
ﬂ Available From (Revi
E Brand
E Class
E Color

E Manufacturer

Output 1
Start Duration @ Text
0 11334 Establishing Connection

E Product Description
Product Name
Product Subcategor

I Productkey

1 3

Metadata | Functions | DMV Output | Results | Query History

In1,Col1 | localhost52878 [§) 1511330 159

Figure 13-4: The DAX Studio screen

This screen consists of five different sections:

e A Microsoft Office-style ribbon runs across the top, giving gives access
to the features available in DAX studio, including those we will be
looking at to help us to optimize our data.

e The Metadata panel 1s on the left-hand side and shows the metadata from
the loaded data model, including those tables that are hidden away
behind the scenes when the data model is viewed from within Power BI
Desktop. These tables include the date tables that are automatically
created by default to help with the time intelligence functionality. Tables
and columns can be dragged on to the editor panel to save typing them.
This panel also has tabs to show a list of DAX functions and a list of the
Dynamic Management Views (DMVs).

e The query editor panel is where you will write DAX queries and
evaluate statements.

e The Output panel i1s where you see information about the queries you run.
It also includes tabs to display the results of queries and other tabs are
displayed to show query plans and other functions.

e Finally, the status bar runs along the bottom and shows the current
connection information. This is useful if you want to connect to the
current data model using SQL Server Management Studio.

With our Power BI Desktop file open and DAX Studio connected, we are now
ready to start exploring our data and its related use of the formula and storage
engines. We do this by entering DAX queries in the query editor panel.

There are two important points to note when entering DAX queries in DAX
Studio:

e Each DAX query needs to start with the evaruare keyword.
e The output from a query must be a table.

If the output from a query is not a table, then it will need to be wrapped by a
function that will convert the output into a table.

Viewing performance with DAX
Traces

For this example, we're going to use a very simple DAX query. Enter the
following in the query editor and then click on the Run button in the Query
section of the Home ribbon:

EVALUATE
FILTER (

'Product’',

'Product' [Color] = "Red"
)

This will return all of the columns from the sroauct table where the value of the
color column equals zeqa. The result from this query will be displayed on the
Results tab of the output panel.

We can now start to use the features of DAX Studio to investigate the
performance of our DAX query. On the Traces section of the Home ribbon, as
shown in Figure 13-5, two buttons enable server timings and show the query
plans that we discussed in the previous section of this chapter:

2 ®
= | WO
Cuery| Server
Cueries | Plan | Timings

Figure 13-5: Showing the query plan and enabling server timings

Click on both buttons to enable the query plan and server timings features.
This will add two new tabs to the output panel. Now re-run this DAX query,
but before you do so, click on the Clear Cache button on the Query section of
the Home ribbon. It is important to do this before you run any query, to avoid
the query engine using data that may already be cached, which would give
inaccurate timings.

When the query has run, you will see some information displayed on the new
tabs of the output panel. Figure 13-6 shows the output for the server timings:

Total SE CPU Line Subclass Duration CPU Rows KB Query SET DC_KIND="AUTO": =
b ms bms 2 Scan 2] 39 3 SELECT 'Product [RowNumiiliiaiae]

=00 'Product [RowNumber], 'Product [ProductKey], ‘Product [Product

e B MName], 'Product [Product Description],
Ams 2 ms ‘Product [ProductSubcategorykey], ‘Product [Manufacturer],
EET 333% ‘Product [Brand)], 'Product'[Class], 'Product [Style], 'Product'[Stock
— Typel, 'Product[Unit Cast], Product [Unit Price], 'Product TAvailable
. For Sale Date], "Product'[Stop Sale Date], 'Product [Status],
SE SE Cach

Q:erlﬁ ;c © 'Product [ProductSubcategoryMame], ‘Product [Column],

'Product'[Column]
FROM 'Product’
WHERE
"Product'[Color] = ‘Red;

‘Estimated size (volume, marshalling bytes) : 39, 2808
1 3 -

Figure 13-6:The output for server timings

This shows that overall the query took 6 ms to process, with 2 ms being spent
by the storage engine retrieving data and 4 ms being spent by the formula
engine processing the data returned by the storage engine. We can also see that
the query only required a single storage engine query and no cached data was
used.

If we switch to the Query Plan tab of the output panel, we can see both the
logical and physical query plans that were created to execute this query, as
can be seen in Figure 13-7:

Line Records Physical Query Plan

1 39 Spool_lterator<Spooliterators: IterPhyOp LogOp=Filter_Vertipaq lterCols(0, 1,2, 3,4,5,6,7, 8,9, 10, 11,12, 13, 14, 15, 16, 17, 18)(Product [RowNumber-26620798-1795-4F74-8F37-64A1
2 3% ProjectionSpool<ProjectFusion< >>: SpoolPhyOp #Records=39
3 Cache: IterPhyCp #FieldCols=18 #ValueCols=0

4 3

Line Logical Query Plan
1 Filter Vertipacy RelLogOp DependOnCals(() 0-71 RequiredCals(0, 1, 2, 3,4, 5,6, 7,8, 9, 10, 17, 12, 13, 14, 15, 16, 17, 18)(Product [RowNumber-26620798-1795-4F74-8F37-6A1BAS059861], ‘Product [P

2 Scan_Vertipaq: RellogCp DependOnCols{){) 0-71 RequiredCals(0, 1,2, 3,4, 5,6,7, 8,9, 10, 11,12, 13, 14, 15, 16, 17, 18)(Product [RowNumber-26629798-1795-4F74-8F37-6A1BAB059B61], ‘Product
3 ‘Product’[Celor] = Red: ScalogOp DependOnCols(9)(Product'[Color]) Boolean DominantValue=false

Figure 13-7: The physical and logical query plans displayed in DAX Studio

Unfortunately, the query plan text is displayed in its raw form, so it can be
difficult to read without some manual reformatting, especially when looking at
query plans for complex DAX queries.

When it comes to identifying bottlenecks and other performance issues with
DAX queries, it is important to look out for long-running queries. It is also

important to look at how much time is spent processing the query in the
storage engine versus the formula engine. Once you have identified potential
issues, then you can start to dig into the query plans and the output generated
in the output panel, to get an idea of what is going on. For example, you may
have a DAX query that uses a filter, which is taking a long time to execute.
Looking at the output, you might realize that it is returning far more rows than
expected. By altering the place in the query where the filter sits, it may be
possible to reduce the number of rows being processed, speeding up the query
considerably.

Unfortunately, there is often no right way to write a DAX query. Performance
can depend on the structure of the data model or the type of data that you are
querying. This is where knowing how to use these tools will help you to
understand how a query is being processed. This, in turn, will allow you to
experiment with changes to your query and to see how those changes affect
query timings and the overall performance of the query.

View VertiPaq metrics

If you are using the latest version of DAX Studio, then it now includes an
option to view information and metrics about the currently connected data
model, which allows you to make some detailed analysis of the model's
design. It gives similar information to the data preview tools that are now in
Power BI Desktop.

To access these advanced features, you will need to enable them on the
Advanced tab of the Options screen. To access this screen, click on the File
tab. Check all of the checkboxes in the Preview Features section, as shown in
Figure 13-8:

DaxStudio - 2.10.1 O

Standard | Key Bindings | Advanced

Publizh Functians Preview Features

| Publizh Functions |

bout your data model to

| Export Functions | h can be imported into Vertipag Analyzer v2

bles

This feature will add “Launch Excel” and "Launch SQL Profiler
options to the advanced tool bar
Show Key Bindings

This feature shows a tab in the options screen to alter global

T
hotkeys

VertiPag Analyzer

[] Include TOM
Include the complete Tabular Object Model (TOM) in the
export for VertiPag Analyzer (VPAX)

Figure 13-8: Enabling DAX Studio preview features from the options screen

You will now have a new Advanced ribbon, as shown in Figure 13-9, which
includes options to import, export, and view metrics. It also includes a button

to launch SQL Server Profiler, which we will cover in the next section:

m Home Advanced Help
a_— A a—
€ 6 &

Imiport Export View Export
Metrics Metrics Metrics

Figure 13-9: The button to launch SQL Profiler

-

Data

Export

saL

Profiler

Excel

=]
=]
A

To view metrics for the currently connected data model, click on the View

Metrics button on the Metrics section of the Advanced ribbon.

DAX Studio will do a quick analysis of the data model's structure and add a
new tab to the output panel called VertiPaq Analyzer. This tab has three tabs

of its own: Tables, Columns, and Relationships. Figure 13-10 gives an
example of what the Tables screen looks like:

VertiPaq Analyzer Preview
Tables | Columns | Relationships

-3

Table Columns Data Dictionary Hier Size Encoding Data Type User HierSize RelSize % Table % DB Segmer|

Name Cardinality

4 Sales 2,282,482 38,516,236 38,514,... 23,857.,... 4,485,052 10,172.... Many
RowNumber-2662979B-1795-4F74-8F37-6A1BAB059B61 0 120 0 120 0 VALUE
SalesKey 2,282 482 - 152167... 6,086,632 120 9,129,952 VALUE
SalesDateKey 1,096 - 37070323651,840 46376 8816 HASH
ProductKey 1,689 - 2,987,068 2933 664 39852 13552 HASH
Unit Cost 397 - 1,163,380 1,150,048 10,116 3,216 HASH
Unit Price 350 - 1,116,264 1,103 488 9,928 2,848 HASH
Sales Quantity 98 35184 31584 2,768 832 HASH
Return Quantity 6 1,552 80 1376 96 HASH
Return Amount 782 - 367,656 341472 19,880 6,304 HASH
Discount Quantity 23 9,468‘ 7,800 1,444 224 HASH
Discount Amount 8572 - 2077264 1839768 168872 68,624 HASH
Total Cost 14,114 - 24839442048520 322464 112960 HASH
Sales Amount 51,7117 - 53444242331,128 2599520 413776 HASH
Sales Tax 51,378 - 40044162331,128 1262216 411,072 HASH

4 Date Table 1096 139304 139,304 5496 123,450 10,448 Many
RowNumber-26629798-1795-4F74-8F37-6A1BAB059861 0 120 0 120 0 VALUE
Date 1,096 56,952 1,760 46,376 8816 HASH
Year 3 1436 8 1364 64 HASH
Quarter Name 4 17,12 8 17,096 80 HASH
Quarter Number 4 1.408 8 1,320 80 HASH
Month Name 12 18,004 552 17,308 144 HASH
Month Number 12 2,096 552 1,400 144 HASH
Week Name 53 19,656 880 18312 464 HASH
Week Number 53 2,908 880 1,564 464 HASH
Day Name 7 17,730 424 17,210 96 HASH
Day Number 7 1,900 424 1,380 96 HASH

n

Intb4
Int6d
DateTime
Int64
Decimal
Decimal
Int6d
Int64
Decimal
Intb4
Decimal
Decimal
Decimal
Decimal

Int64
DateTime
Int64
String
Double
String
Into4
String
Int64
String
Int4

- 0.00%
- 39.51% 39.36%
- 963%
- 1.76%
- 3.02%
- 290%
- 0.09%
- 0.00%
- 095%
- 002%
- 539%
- 645%
- 13.88% 13.83%
- 1040% 10.36%

- 0.09%
- 40.86%
- 1.03%
- 12.33%
- 101%
- 1292%
- 1.50%
- 14.10%
- 209%
- 1272%
- 136%

99.64%

0.00%

9.59%
1.73%
3.01%
2.89%
0.09%
0.00%
0.95%
0.02%
537%
6.43%

0.36%
0.00%
0.15%
0.00%
0.04%
0.00%
0.05%
0.01%
0.05%
0.01%
0.05%
0.00%

Figure 13-10: Viewing metrics with the VertiPaq Analyzer

The screen gives plenty of information about columns in each table. Each

column includes details of the cardinality of the column, the different sizes,
and the type of encoding being used to compress data in the column. As we
have seen in previous chapters, this type of information can be very helpful

when you are working on improving the performance of low-performing
queries.

Using SQL Server Profiler

Another tool we can use to help to monitor and improve the performance of
our DAX queries is SQL Server Profiler. This tool is installed as part of the
SQL Server management tools and can be accessed directly from Windows or
from within DAX Studio. SQL Server Profiler allows you to capture trace
files that record events generated by an instance of the Analysis Services
engine. Using the information it captures, you can do the following:

Monitor performance.

Debug queries.

Find slow running queries.

Test queries in development.

Audit activity on an instance.

e Save data to a file or a SQL Server table.

If you want to use Profiler with an instance of Analysis Services, you will
need to know some details about that instance, such as the name of the server
it is running on.

As Excel Power Pivot and Power BI Desktop also use the Analysis Services
engine, it is possible to capture event Traces with them, by saving trace events
to a file and then replaying that file using SQL Server Profiler. Also, it is
possible to directly connect Profiler to an instance of Analysis Services on an
open Power BI Desktop report.

To capture a trace file in Excel, you will need to click the Settings button on
the PowerPivot ribbon. On the Diagnostic Options section of the PowerPivot
Options & Diagnostics dialog, check the Enable PowerPivot Tracing for the
current Excel session checkbox, as shown in Figure 13-11. You may need to
open the Excel Power Pivot data model first, before you can use this option,
by clicking on the Manage button on the Data Model section of the
PowerPivot ribbon:

H - :
CUI HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW ADD-INS POWERBI POWERPNGT TEAM

rﬁ"H jﬂ @ B[Align Vertically @ @ D& d}

Manage Calculated KPIs Addto Update Detect Settings
Figlds ~ - Data Model Al
Data Model Calculations Slicer Alignment Tables Relationships
Al " | PowerPivat Options & Diagnostics ? x
A
1 | | PowerPivot for Excel delivers self-service analysis functionality to Excel users. When used with PowerPivot for
5 " | SharePoint, you also get collaborative publishing and document management on SharePoint sites. Use this dialog box
to collect information about your PowerPivat environment.,
3
4 Support & Diagnostics | anguage Categorization
3
6 Execution Mode
7
8 PowerPivot Execution Mode: Regular privilege user
g
10
n)) .
- Diagnostic Options
13 [Enable PowerPivot Tracing for the current Excel session
14
. . Trace not enabled
15 Trace File Location:
8 Take snapshot Record information about the PowerPivot environment. The information is stored as
17 a snapshot in the trace file specified above for the current Excel session
18
19
20
21
22
23
24
23
26

EIEI;ﬁxlign Harizontally

] Cancel

Figure 13-11: Enabling Power Pivot tracing in Excel

lan Horne ~

To connect Profiler directly to an instance of Analysis Services running on an
open Power BI Desktop report, you will need to know the port number that

Power BI Desktop is using. If you've already connected to Power BI Desktop
with DAX Studio, then the port number will be shown on the status bar as can

be seen

in Figure 13-12:

Ln1,Col1 B localhost:52878 [4) 15.1.1330 £ 159
Figure 13-12: Getting the port number from DAX Studio's status bar

Alternatively, you can find it using this method:

1. Open Task Manager and find the Process ID (PID) associated with the
msmdsrv process. This is the process for the Analysis Services engine
running within Power BI Desktop.

2. Open Command Prompt and enter the following;

| netstat -anop tcp

3. Find the port number in the Local Address column for the PID that you
obtained in step 1.

Open SQL Server Profiler and complete the Connect to Server dialog as
shown in Figure 13-13, replacing the port number after localhost on the
Server name field with the port number you obtained:

= 52
Server type: Analysis Services v
Server name: [Iocalhust: 52878 v
Authentication: Windows Authentication ~

JOSHSGAMELAPTOP\anho

Cancel Help Options >>

Figure 13-13: Connecting to Analysis Services

In DAX studio, if you have enabled the Advanced features on the Options
screen, there is a SQL Profiler button on the External Tools section of the
Advanced ribbon. If you click on this button, then it will open SQL Server
Profiler and it will automatically connect to the same instance of Analysis
Services that you are connected to with DAX Studio.

Once connected, you can run a trace to catch DAX query plans, queries to the
storage engine, and any other events that you might be interested in, relating to

your DAX query. As a minimum, consider capturing data relating to the
following events:

Query End

DAX Query Plan

VertiPaq SE Query Cache Match
VeritPaq SE Query End

Figure 13-14 shows an example of the Events Selection screen for a trace
file, showing these options selected:

X
General Events Selection]
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns™ options.
Events | ActivitylD | ApplicationContext | PApplicationName | CPUTime | ClientProcessID | ConnectionlD | Curert Time
- Queries Events
[v Cuery End v v v v v v v
- Query Processing
¥ DA Query Plan v v v v v v v
[v VertiFag SE Query Cache Match v [v v [v
¥ VetiPaq SE Query End v v v v v
£ >
Queries Events
Collection of events for queries. [Show all events
[Show all columns
No data column selected.
Column Fitters... |
Organize Columns... |

Run ‘ Cancel ‘ Help |

Figure 13-14: Selecting events to capture for a trace file

If you now go back and run a query or create a new visual on the Power BI
Desktop report page, then you will see events being created and saved to the
trace file. Figure 13-15 shows an example of the data you can expect to see:

8 501 Server Profler - [Untiled - 1 (ocalhost52878)] S]]

%F\Ie Edit View Replay Tools Window Help - B X

AOgEFae v BANR DElP

| EvertCass | EventSubclass | cPuTime | Duration | TextData A
DAX Query Plan 1 - DAX VertiPaq Logical Plan Order: RelLogOp DependOnCols (]
VertiPaq SE Query Cache M... 0 - VertiPaq Cache Exact Match SET DC_KIND="AUTO"; SELECT
vertiPaq SE Query End 0 - vertiPaq Scan 0 0 SET DC_KIND="AUTQ"; SELECT
DAX Query Plan 2 - DAX VertiPaq Physical Plan PartitionIntoGroups: IterPhy0
Query End 3 - DAXQuery 0 7 EVALUATE TOPN(502,
DAX Query Plan 1 - DAX VertiPaq Logical Plan order: RelLogOp DependonCols(
VertiPaq SE Query Cache M... :0 - VertiPaq Cache Exact Match SET DC_KIND="AUTO"; SELECT
vertiPaq SE Query End 0 - vertiPaq Scan 0 1 SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query Cache M... 0 - VertiPag Cache Exact Match SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query End 0 - vertiPag Scan 0 0 SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query Cache M... 0 - VertiPaq Cache Exact Match SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query End 0 - VertiPag Scan 0 0 SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query Cache M... 0 - VertiPaq Cache Exact Match SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query End 0 - vertiPag Scan 0 0 SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query Cache M... 0 - VertiPaq Cache Exact Match SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query End 0 - vertiPag Scan 0 0 SET DC_KIND="AUTO"; SELECT
VertiPaq SE Query Cache M... 0 - VertiPaq Cache Exact Match SET DC_KIND="AUTO"; SELECT

< > ’

SET DC_KIND="AUTO"; A

SELECT

[Date (12)].[patekey (117)] AS [Date (12)$Datekey (117)1,

SuM([Sales (1013)].[sales Amount (1039)1) AS [$Measure0]

FROM [Sales (1013)]

LEFT OUTER JOIN [Date (12)] ON [Sales (1013)].[Datekey (1022)]=[Date (12)].[Datekey (117)1;
< > ’
Trace is running. ‘ Ln7,Col1 ‘ Rows: 40

‘ Connections: 1~

Figure 13-15: An example of events being captured to a trace file

In addition to creating trace files, SQL Server Profiler can also read and
display previously saved trace files. For example, we have seen that is
possible to save a trace file using Excel Power Pivot.

Trace files give you information about CPU time and duration, which is very
useful when identifying bottlenecks. For this, it is important to understand how
much time is spent processing a query in the storage versus the formula
engine. Using the Query End event will give you the total duration of a DAX
query, while the VertiPaq events will provide information about the duration
spent processing with the storage engine. If you subtract this information from
the total duration, it will give you the time spent with the formula engine.

Using Power BI Performance
Analyzer

For the last section in this chapter, we are going to look at the Performance
Analyzer feature in Power BI Desktop. This feature gives information on
how elements of a report, such as visuals and DAX queries, are performing.

To display the Performance Analyzer pane, click on the Performance
Analyzer checkbox on the Show section of the View ribbon, as shown in
Figure 13-16:

| H 5 | Hands-On Bl with DAX (Chapter 13) - Power Bl Desktop

m Home View Modeling Help

El ID [] show Gridlines [] Bookmarks Pane Performance Analyzer

[] snap Objects to Grid [| Selection Pane
Phone Page
Layout View = [] Lock Objects [] sync slicers

View Show

Figure 13-16: Enabling the performance analyzer feature in Power BI Desktop

Once checked, the Performance Analyzer pane will be displayed to the right
of the report desktop. From here, you can start recording data and see
information on the processing times required to update report elements when
a user interacts with a report. For example, if you alter a slicer, click on a
visual, or adjust a filter, then it will send a query to the data model.
Information on the action is then displayed on the Performance Analyzer
pane.

Data is recorded and displayed in real time, so you will immediately see the
Performance Analyzer pane updated as you interact with a report.

Each visual contains information on the following categories:

e DAX query: The time between a visual sending a query and Analysis
Services returning the result

e Visual display: The time taken to draw the visual on screen

e Other: The time taken to prepare queries, for other visuals to complete,
or other background tasks

Figure 15-17 shows an example of the output you get with the Performance
Analyzer:

Performance analyzer X

{0 Refresh visuals @ Stop

& Clear [3 Export

Mame Dwration (ms) i

-
{

Refreshed visual

= Products by Year 228

DX query 38
Visual display 16
Cther 174
([Capy query
E Sales Amount by Year 312
DAX guery 10
Visual display 16
Other 286
[0y Copy query
[Total Sales 252
H Total Quantity 189
[+ Products by Color 276
Bl Cross-highlighted
[+ Products by Year 376
[H Sales Amount by Year 479
[£ Total Sales 522
[# Total Quantity 4729
[Products by Color 183
Bl Cross-highlighted
[Products by Year 473
[+ Sales Amount by Year 170
[£ Total Sales 583
[+ Total Quantity 622
[Products by Color 537

Figure 13-17: An example of the output from the Power BI performance analyzer

You can see from this where data has been captured for refreshing the visuals
and where data was generated when a visual was cross-highlighted.

When identifying bottlenecks in your report, you should be looking for large
duration times. If it is the visual display that has a long duration, you should
consider whether another type of visual would be better or whether there 1s
some way to reduce the amount of data included in the visual.

If the DAX query has a long duration, then it may need further investigation.
It may be due to a slow measure or a poorly designed data model. It is
possible to copy the query by clicking on the Copy query. You can then paste
the query into DAX Studio or SSMS and execute the query from there, using
the features we looked at earlier in this chapter.

Finally, it 1s possible to save the information created by the Performance
Analyzer to a .json file, by clicking on Export.

Summary

In the last chapter of this book, we looked at some of the techniques and tools
that are used to help with analyzing the performance of DAX queries and
identify potential problems.

We started off this chapter by learning about the storage and formula engines,
the two engines used to process a DAX query. We looked at how they work
together to retrieve data from the data model, and then process that data to
return a result. We learned about how the logical and physical query plans
produced by these query engines can help to identify and resolve
performance issues with DAX queries.

Finally, we looked at some tools to help us to investigate the performance of
DAX queries. We looked at DAX Studio, SQL Server Profiler, and the
Performance Analyzer feature in Power BI Desktop. We learned about using
these tools to monitor performance by looking at the output of the query
engines and how they can be used to create and read Traces files containing
events that occur when processing DAX queries.

We have now come to the end of our hands-on journey into learning about the
basics of the DAX language. You should now have a good understanding of
how DAX can help you, as a business intelligence professional, to gain much
deeper insights into your data.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Power BI

Learn Power BI
Greg Deckler

ISBN: 9781838644482

e Explore the different features of Power Bl to create interactive
dashboards

e Use the Query Editor to import and transform data

e Perform simple and complex DAX calculations to enhance analysis

e Discover business insights and tell a story with your data using Power
BI

e Explore data and learn to manage datasets, dataflows, and data
gateways

o Use workspaces to collaborate with others and publish your reports

T-SQL
Querying

https://www.packtpub.com/in/data/learn-power-bi
https://www.packtpub.com/in/big-data-and-business-intelligence/learn-t-sql-querying

Learn T-SQL Querying
Pedro Lopes, Pam Lahoud

ISBN: 9781789348811

e Use Query Store to understand and easily change query performance

e Recognize and eliminate bottlenecks that lead to slow performance

e Deploy quick fixes and long-term solutions to improve query
performance

e Implement best practices to minimize performance risk using T-SQL

e Achieve optimal performance by ensuring careful query and index
design

o Use the latest performance optimization features in SQL Server 2017
and SQL Server 2019

» Protect query performance during upgrades to newer versions of SQL
Server

Leave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers think about our
products, and our authors can see your feedback on the title that they have
worked with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Hands-On Business Intelligence with DAX

	Dedication
	About Packt
	Why subscribe?

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Section 1: Introduction to DAX for the BI Pro
	What is DAX?
	Introducing DAX
	Working with data types and operators
	Data types
	Operators

	Working with calculated columns and measures
	Calculated columns
	Measures
	Calculated columns versus measures

	Evaluation contexts – part 1
	Row context
	Filter context

	Using the CALCULATE function
	Summary

	Using DAX Variables and Formatting
	Getting started with DAX variables
	Variable nesting
	Using variables with measures, calculated columns, and tables

	Formatting your DAX code
	Debugging errors in your DAX code
	Summary

	Building Data Models
	Introduction to data modeling
	Data modeling concepts in DAX
	Fact tables and dimension tables
	Star schema and snowflake schema
	Relationships
	Cardinality
	Cross filter direction
	Hierarchies

	Getting data into your data model
	Building your first data model

	Extending your data model
	Adding a calculated column
	Adding a calculated table
	Adding a measure

	It's a date
	Summary

	Working with DAX in Power BI, Excel, and SSAS
	Working with DAX in Power BI Desktop
	The DAX formula editor

	Working with DAX in Excel Power Pivot
	Installing and enabling the Power Pivot add-in
	Adding data to an Excel data model
	Extending an Excel data model

	Working with DAX in SSAS Tabular
	Importing the Excel Power Pivot data model into the SSDT project
	Deploying your data model to an instance of SSAS Tabular
	Working with the tabular database in SSMS
	Querying SSAS Tabular data using DAX

	Summary

	Getting It into Context
	Introducing evaluation contexts – part 2
	Deep diving into row context
	Iterator functions

	Deep diving into filter context
	Expanded tables

	Changing context using DAX functions
	Context transition
	Changing the filter context
	Using the ALL function
	Using filters with CALCULATE

	Summary

	Section 2: Understanding DAX Functions and Syntax
	Progressive DAX Syntax and Functions
	Breaking down DAX syntax
	Naming requirements

	Dealing with relationships
	Dealing with multiple relationships
	Virtual relationships

	Looking at DAX functions
	Function types
	Function groups

	Introduction to aggregation functions
	Aggregation function reference
	The MIN, MINA, and MINX functions

	Functions for parent-child hierarchies
	Parent and child function reference
	The PATH, PATHCONTAINS, and PATHLENGTH functions
	The PATHITEM and PATHITEMREVERSE functions

	Summary

	Table Functions
	Introducing table functions
	Creating a DAX calculated table
	Using a table expression as a table function parameter
	Querying your data model using table functions

	Looking at table manipulation functions
	Table manipulation functions reference
	The CROSSJOIN function
	The DATATABLE function
	The EXCEPT, INTERSECT, and UNION functions
	The GENERATESERIES function

	Working with table functions
	The COUNTROWS function
	The PRODUCTX function
	The CONTAINS function
	The CONCATENATEX function

	Summary

	Date, Time, and Time Intelligence Functions
	Introduction to date and time functions
	Date and time function reference

	Working with date and time functions
	Building a date table
	The CALENDAR and CALENDARAUTO functions
	The DATEDIFF function
	The EDATE function
	The EOMONTH function
	The YEARFRAC function

	Looking at time intelligence functions
	Time intelligence function reference

	Making your data more intelligent over time
	DAX functions that return a single date
	Comparing values over different periods of time
	The opening and closing balance functions

	Summary

	Filter Functions
	Introduction to filter functions
	Filter function reference

	Filtering your data with filter functions
	The ALL and ALLEXCEPT functions
	The ALLSELECTED function
	The FILTER function
	The KEEPFILTERS function
	The LOOKUPVALUE function
	The SELECTEDVALUE function

	Summary

	Statistical Functions
	Introducing statistical functions
	Statistical function reference

	Calculating averages
	The AVERAGE function
	Calculating rolling averages with the AVERAGEX function

	Working with percentiles
	The PERCENTILE.EXC and PERCENTILE.INC functions
	The PERCENTILEX.EXC and PERCENTILEX.INC functions
	The MEDIAN and MEDIANX functions

	Ranking your data
	The RANK.EQ function
	The RANKX function

	Calculating standard deviation and variance
	Summary

	Working with DAX Patterns
	Introducing Power BI Quick Measures
	Creating your first quick measure

	Calculating cumulative totals
	Binning data using segmentation
	Comparing equivalent periods
	Comparing previous periods
	Comparing the period-on-period percentages
	Calculating period-to-date totals

	Working with mathematical patterns
	Summary

	Section 3: Taking DAX to the Next Level
	Optimizing Your Data Model
	Introducing the VertiPaq engine
	Value encoding
	Dictionary encoding
	RLE

	Understanding your data model
	Data profiling with Power BI Desktop
	Data profiling in SSAS Tabular and Excel Power Pivot

	Simplifying your data model
	Understanding your source data
	Keeping your data model simple
	Using a star schema
	Merging and appending tables
	Importing required rows and columns only
	Using the correct data type
	Using measures instead of calculated columns

	Creating summary tables
	Summary

	Optimizing Your DAX Queries
	Introduction to the DAX calculation engines
	The formula engine
	The storage engine

	Monitoring performance with DAX Studio
	Viewing performance with DAX Traces
	View VertiPaq metrics

	Using SQL Server Profiler
	Using Power BI Performance Analyzer
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

